Journal Home > Volume 14 , Issue 12

The practical application of lithium-sulfur (Li-S) batteries is hampered by the insulative nature of sulfur, sluggish electrochemical kinetics, and large volume variation, which result in capacity-fading at a large current density and poor cycling stability. Herein, a three-dimensional (3D) aluminum photonic crystal encapsulating sulfur (APC@S) composite as a binder-free cathode for Li-S battery is reported. The 3D APC@S cathode can deliver a fantastic capacity of 1, 517.8 mAh·g−1 at 0.5 C, and retains 712.7 mAh·g−1 after 1, 500 cycles at 2 C with a decay rate of 0.02% per cycle. Even at a high rate of 5 C, the reversible capacity can still maintain at 680.7 mAh·g−1 after 1, 000 cycles with a capacity retention of 74.8%. Furthermore, the assembled soft-packaged Li-S battery also exhibits high reversible capacity and stable cycling performance. The excellent electrochemical performance is attributed to the 3D hierarchical and continuously porous structure and high conductive aluminum-wall, which can effectively trap polysulfides, confine the volume expansion on cycling, and accelerate electron/ion transfer. It is expected that this high conductive metal cathode has a great future for the application of energy storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultra-high conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries

Show Author's information Jiajia XiaoShengxuan LinZihe CaiTahir MuhmoodXiaobin Hu( )
State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong UniversityShanghai 200240 China

Abstract

The practical application of lithium-sulfur (Li-S) batteries is hampered by the insulative nature of sulfur, sluggish electrochemical kinetics, and large volume variation, which result in capacity-fading at a large current density and poor cycling stability. Herein, a three-dimensional (3D) aluminum photonic crystal encapsulating sulfur (APC@S) composite as a binder-free cathode for Li-S battery is reported. The 3D APC@S cathode can deliver a fantastic capacity of 1, 517.8 mAh·g−1 at 0.5 C, and retains 712.7 mAh·g−1 after 1, 500 cycles at 2 C with a decay rate of 0.02% per cycle. Even at a high rate of 5 C, the reversible capacity can still maintain at 680.7 mAh·g−1 after 1, 000 cycles with a capacity retention of 74.8%. Furthermore, the assembled soft-packaged Li-S battery also exhibits high reversible capacity and stable cycling performance. The excellent electrochemical performance is attributed to the 3D hierarchical and continuously porous structure and high conductive aluminum-wall, which can effectively trap polysulfides, confine the volume expansion on cycling, and accelerate electron/ion transfer. It is expected that this high conductive metal cathode has a great future for the application of energy storage devices.

Keywords: lithium-sulfur battery, ordered, photonic crystal, aluminum, interconnected, high-conductivity

References(51)

1

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

2

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

3

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

4

Xu, Z. L.; Kim, S. J.; Chang, D.; Park, K. Y.; Dae, K. S.; Dao, K. P.; Yuk, J. M.; Kang, K. Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries. Energy Environ. Sci. 2019, 12, 3144–3155.

5

Chen, S. Q.; Huang, X. D.; Liu, H.; Sun, B.; Yeoh, W.; Li, K. F.; Zhang, J. Q.; Wang, G. X. 3D hyperbranched hollow carbon nanorod architectures for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2014, 4, 1301761.

6

Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.

7

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

8

Chung, S. H.; Chang, C. H.; Manthiram, A. Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv. Funct. Mater. 2018, 28, 1801188.

9

Zha, C. Y.; Wu, D. H.; Zhang, T. K.; Wu, J. H.; Chen, H. Y. A facile and effective sulfur loading method: Direct drop of liquid Li2S8 on carbon coated TiO2 nanowire arrays as cathode towards commercializing lithium-sulfur battery. Energy Storage Mater. 2019, 17, 118–125.

10

Guo, J. C.; Xu, Y. H.; Wang, C. S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 2011, 11, 4288–4294.

11

Zhou, G. M.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L. C.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H. M. A flexible nanostructured sulphur- carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ. Sci. 2012, 5, 8901–8906.

12

Chen, Y. Z.; Elangovan, A.; Zeng, D. L.; Zhang, Y. F.; Ke, H. Z.; Li, J.; Sun, Y. B.; Cheng, H. S. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li-S Batteries. Adv. Funct. Mater. 2020, 30, 1906444.

13

Zhang, Y. Z.; Zhang, Z.; Liu, S.; Li, G. R.; Gao, X. P. Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery. ACS Appl. Mater. Interfaces 2018, 10, 8749–8757.

14

Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 2010, 3, 1531–1537.

15

He, G.; Ji, X. L.; Nazar, L. High "C" rate Li-S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 2011, 4, 2878–2883.

16

Strubel, P.; Thieme, S.; Biemelt, T.; Helmer, A.; Oschatz, M.; Brückner, J.; Althues, H.; Kaskel, S. ZnO hard templating for synthesis of hierarchical porous carbons with tailored porosity and high performance in lithium-sulfur battery. Adv. Funct. Mater. 2015, 25, 287–297.

17

Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 3591–3595.

18

Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.

19

Wang, C.; Wang, X. S.; Wang, Y. J.; Chen, J. T.; Zhou, H. H.; Huang, Y. H. Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery. Nano Energy 2015, 11, 678–686.

20

Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.

21

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

22

Fan, X. J.; Sun, W. W.; Meng, F. C.; Xing, A. M.; Liu, J. H. Advanced chemical strategies for lithium–sulfur batteries: A review. Green Energy Environ. 2018, 3, 2–19.

23

Weng, W.; Pol, V. G.; Amine, K. Ultrasound assisted design of sulfur/carbon cathodes with partially fluorinated ether electrolytes for highly efficient Li/S batteries. Adv. Mater. 2013, 25, 1608–1615.

24

Zhang, H. G.; Yu, X. D.; Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.

25

Zhang, H. G.; Braun, P. V. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. Nano Lett. 2012, 12, 2778–2783.

26

Liu, J. Y.; Zhang, H. G.; Wang, J. J.; Cho, J.; Pikul, J. H.; Epstein, E. S.; Huang, X. J.; Liu, J. H.; King, W. P.; Braun, P. V. Hydrothermal fabrication of three-dimensional secondary battery anodes. Adv. Mater. 2014, 26, 7096–7101.

27

Meng, X. D.; Al-Salman, R.; Zhao, J. P.; Borissenko, N.; Li, Y.; Endres, F. Electrodeposition of 3D ordered macroporous germanium from ionic liquids: A feasible method to make photonic crystals with a high dielectric constant. Angew. Chem., Int. Ed. 2009, 48, 2703–2707.

28

Lin, S. X.; Yan, Y.; Cai, Z. H.; Liu, L.; Hu, X. B. A host-configured lithium-sulfur cell built on 3D nickel photonic crystal with superior electrochemical performances. Small 2018, 14, 1800616.

29

Lin, S. X.; Shafique, M. K.; Cai, Z. H.; Xiao, J. J.; Chen, Y. H.; Wang, Y. F.; Hu, X. B. Three-dimensional-ordered porous nanostructures for lithium-sulfur battery anodes and cathodes confer superior energy storage performance. ACS Nano 2019, 13, 13037–13046.

30

Xia, Y.; Gates, B.; Yin, Y.; Lu, Y. Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 2000, 12, 693–713.

DOI
31

Gasparotto, L. H. S.; Prowald, A.; Borisenko, N.; El Abedin, S. Z.; Garsuch, A.; Endres, F. Electrochemical synthesis of macroporous aluminium films and their behavior towards lithium deposition/ stripping. J. Power Sources 2011, 196, 2879–2883.

32

Jin, Y.; Yu, H.; Gao, Y.; He, X. Q.; White, T. A.; Liang, X. H. Li4Ti5O12 coated with ultrathin aluminum-doped zinc oxide films as an anode material for lithium-ion batteries. J. Power Sources 2019, 436, 226859.

33

Pelicano, C. M.; Yanagi, H. Enhanced charge transport in Al-doped ZnO nanotubes designed via simultaneous etching and Al doping of H2O-oxidized ZnO nanorods for solar cell applications. J. Mater. Chem. C 2019, 7, 4653–4661.

34

Zhou, W. D.; Wang, C. M.; Zhang, Q. L.; Abruña, H. D.; He, Y.; Wang, J. W.; Mao, S. X.; Xiao, X. C. Tailoring pore size of nitrogen-doped hollow carbon nanospheres for confining sulfur in lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1401752.

35

Zhou, W. D.; Xiao, X. C.; Cai, M.; Yang, L. Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. Nano Lett. 2014, 14, 5250–5256.

36

Liang, X.; Zhang, M. G.; Kaiser, M. R.; Gao, X. W.; Konstantinov, K.; Tandiono, R.; Wang, Z. X.; Liu, H. K.; Dou, S. X.; Wang, J. Z. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy 2015, 11, 587–599.

37

Qin, J.; He, C. N.; Zhao, N. Q.; Wang, Z. Y.; Shi, C. S.; Liu, E. Z.; Li, J. J. Graphene networks anchored with Sn@Graphene as lithium ion battery anode. ACS Nano 2014, 8, 1728–1738.

38

Chen, H. W.; Wang, C. H.; Dong, W. L.; Lu, W.; Du, Z. L.; Chen, L. W. Monodispersed sulfur nanoparticles for lithium-sulfur batteries with theoretical performance. Nano Lett. 2015, 15, 798–802.

39

Chen, Y.; Choi, S.; Su, D. W.; Gao, X. C.; Wang, G. X. Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium- sulfur batteries. Nano Energy 2018, 47, 331–339.

40

Deng, W. N.; Hu, A. P.; Chen, X. H.; Zhang, S. Y.; Tang, Q. L.; Liu, Z.; Fan, B. B.; Xiao, K. K. Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium-sulfur batteries. J. Power Sources 2016, 322, 138–146.

41

Cui, G. L.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Wang, D. R.; Wang, J. Y.; Zhang, Z.; Wang, X.; Chen, Z. W. Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium- sulfur batteries. Nano Energy 2020, 72, 104685.

42

Wei, H.; Rodriguez, E. F.; Best, A. S.; Hollenkamp, A. F.; Chen, D. H.; Caruso, R. A. Ordered mesoporous graphitic carbon/iron carbide composites with high porosity as a sulfur host for Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 13194–13204.

43

Hu, C.; Kirk, C.; Cai, Q.; Cuadrado-Collados, C.; Silvestre-Albero, J.; Rodríguez-Reinoso, F.; Biggs, M. J. A high-volumetric-capacity cathode based on interconnected close-packed N-Doped porous carbon nanospheres for long-life lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1701082.

44

Yang, W.; Yang, W.; Song, A. L.; Sun, G.; Shao, G. J. 3D interconnected porous carbon nanosheets/carbon nanotubes as a polysulfide reservoir for high performance lithium-sulfur batteries. Nanoscale 2018, 10, 816–824.

45

Liu, G. H.; Luo, D.; Gao, R.; Hu, Y. F.; Yu, A. P.; Chen, Z. W. A combined ordered macro-mesoporous architecture design and surface engineering strategy for high-performance sulfur immobilizer in lithium-sulfur batteries. Small 2020, 16, 2001089.

46

Yu, H. J.; Li, H. W.; Yuan, S. Y.; Yang, Y. C.; Zheng, J. H.; Hu, J. H.; Yang, D.; Wang, Y. G.; Dong, A. G. Three-dimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. Nano Res. 2017, 10, 2495–2507.

47

Liu, M. M.; Zhang, C. C.; Su, J. M.; Chen, X.; Ma, T. Y.; Huang, T.; Yu, A. S. Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 20788–20795.

48

Zheng, C.; Niu, S. Z.; Lv, W.; Zhou, G. M.; Li, J.; Fan, S. X.; Deng, Y. Q.; Pan, Z. Z.; Li, B. H.; Kang, F. Y. et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 2017, 33, 306–312.

49

Wang, P. Y.; Zeng, R.; You, L.; Tang, H.; Zhong, J. S.; Wang, S. Q.; Yang, T.; Liu, J. W. Graphene-like matrix composites with Fe2O3 and Co3O4 as cathode materials for lithium-sulfur batteries. ACS Appl. Nano Mater. 2020, 3, 1382–1390.

50

Xiang, M. W.; Wu, H.; Liu, H.; Huang, J.; Zheng, Y. F.; Yang, L.; Jing, P.; Zhang, Y.; Dou, S. X.; Liu, H. K. A flexible 3D multifunctional MgO-Decorated carbon foam@CNTs hybrid as self-supported cathode for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1702573.

51

Yuan, G. H.; Jin, H. F.; Geng, M.; Liu, X. Y.; Bakenov, Z. Hybrids of La2O3 nanoplates anchored in three-dimensional carbon nanotubes microspheres as efficient sulfur-hosts for highperformance lithium/ sulfur batteries. Mater. Lett. 2020, 270, 127690.

File
12274_2021_3423_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 December 2020
Revised: 23 February 2021
Accepted: 24 February 2021
Published: 14 April 2021
Issue date: December 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work described in this paper was supported by the National Natural Science Foundation of China (Nos. 51673115 and 51373097). Moreover, we thank the support of the Shanghai Jiao Tong University Medical Engineering Cross Research Fund Project (No. YG2016MS19).

Return