AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures

Dawei Hu1,§Siqi Wang1,§Cheng Zhang2Pengshu Yi3Pingkai Jiang1Xingyi Huang1( )
Department of Polymer Science and Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China

§ Dawei Hu and Siqi Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Ultrathin and flexible electromagnetic shielding materials hold great potential in civil and military applications. Despite tremendous research efforts, the development of advanced shielding materials is still needed to provide additional functionalities for various artificial-intelligence-driven systems, such as tactile sensing ability. Herein, a layering design strategy is proposed to fabricate ultrathin Ti3C2Tx MXene-aramid nanofiber (MA) films by a layer-by-layer assembling process. Compared to that of randomly mixed films, the designed MA films exhibited a higher EMI shielding efficiency at an ultrathin thickness of 9 μm, which increased from 26.4 to 40.7 dB, owing to the additional multiple-interface scattering mechanism. Importantly, the novel MA films displayed strong EMI shielding ability even after heating/cooling treatments within a wide temperature range of -196 to 300 °C. Moreover, the same material displayed a tensile strength of 124.1 ± 2.7 MPa and a toughness of 6.3 ± 1.1 MJ·m-3, which are approximately 9.1 times and 45 times higher than those of pure MXene films, respectively. The MA film is also capable of detecting tactile signals via the triboelectric effect. A 2 × 4 tactile sensor array was developed to achieve an accurate signal catching capability. Therefore, in addition to the shielding performance, the manifestation of tactile perception by the MA films offers exciting opportunities in the fields of soft robotics and human-machine interactions.

Electronic Supplementary Material

Download File(s)
12274_2021_3297_MOESM1_ESM.pdf (2.4 MB)

References

[1]
Cao, M. S.; Wang, X. X.; Zhang, M.; Shu, J. C.; Cao, W. Q.; Yang, H. J.; Fang, X. Y.; Yuan, J. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 2019, 29, 1807398.
[2]
Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426-1436.
[3]
Li, X. L.; Yin, X. W.; Song, C. Q.; Han, M. K.; Xu, H. L.; Duan, W. Y.; Cheng, L. F.; Zhang, L. T. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv. Funct. Mater. 2018, 28, 1803938.
[4]
Wang, L.; Song, P.; Lin, C. T.; Kong, J.; Gu, J. W. 3D Shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding. Research 2020, 2020, 4093732.
[5]
Pan, J. L.; Guo, H.; Wang, M.; Yang, H.; Hu, H. W.; Liu, P.; Zhu, H. W. Shape anisotropic Fe3O4 nanotubes for efficient microwave absorption. Nano Res. 2020, 13, 621-629.
[6]
Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. A.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765.
[7]
Chen, D.; Pei, Q. B. Electronic muscles and skins: A review of soft sensors and actuators. Chem. Rev. 2017, 117, 11239-11268.
[8]
Zeng, Z. H.; Jin, H.; Chen, M. J.; Li, W. W.; Zhou, L. C.; Xue, X.; Zhang, Z. Microstructure design of lightweight, flexible, and high electromagnetic shielding porous multiwalled carbon nanotube/polymer composites. Small 2017, 13, 1701388.
[9]
Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754-8765.
[10]
Kashani, H.; Giroux, M.; Johnson, I.; Han, J. H.; Wang, C.; Chen, M. W. Unprecedented electromagnetic interference shielding from three-dimensional bi-continuous nanoporous graphene. Matter 2019, 1, 1077-1087.
[11]
Gupta, S.; Tai, N. H. Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 2019, 152, 159-187.
[12]
Abbasi, H.; Antunes, M.; Velasco, J. I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319-373.
[13]
Zhang, Q. X.; Mao, Z.; Wang, K. X.; Phan, N. T. S.; Zhang, F. Microwave-assisted aqueous carbon-carbon cross-coupling reactions of aryl chlorides catalysed by reduced graphene oxide supported palladium nanoparticles. Green Chem. 2020, 22, 3239-3247.
[14]
Yin, Y. J.; Tan, Y.; Wei, Q. Y.; Zhang, S. C.; Wu, S. Q.; Huang, Q.; Hu, F. L.; Mi, Y. Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Res. 2020, .
[15]
Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.
[16]
Liu, J.; Zhang, H. B.; Sun, R. H.; Liu, Y. F.; Liu, Z. S.; Zhou, A. G.; Yu, Z. Z. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1702367.
[17]
Zhang, Y. L.; Wang, L.; Zhang, J. L.; Song, P.; Xiao, Z. R.; Liang, C. B.; Qiu, H.; Kong, J.; Gu, J. W. Fabrication and investigation on the ultra-thin and flexible Ti3C2Tx/co-doped polyaniline electromagnetic interference shielding composite films. Compos. Sci. Technol. 2019, 183, 107833.
[18]
Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78-81.
[19]
Zhang, M.; Cao, J.; Wang, Y.; Song, J.; Jiang, T. C.; Zhang, Y. Y.; Si, W. M.; Li, X. W.; Meng, B.; Wen, G. W. Electrolyte-mediated dense integration of graphene-MXene films for high volumetric capacitance flexible supercapacitors. Nano Res. 2020, .
[20]
Jun, B. M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res. 2019, 12, 471-487.
[21]
Cheng, Y. F.; Ma, Y. N.; Li, L. Y.; Zhu, M.; Yue, Y.; Liu, W. J.; Wang, L. F.; Jia, S. F.; Li, C.; Qi, T. Y. et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 2020, 14, 2145-2155.
[22]
An, H.; Habib, T.; Shah, S.; Gao, H. L.; Radovic, M.; Green, M. J.; Lutkenhaus, J. L. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018, 4, eaaq0118.
[23]
Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244-1252.
[24]
Guo, L. H.; Zhang, Y. M.; Zhang, G.; Wang, Q. H.; Wang, T. M. MXene-Al2O3 synergize to reduce friction and wear on epoxy-steel contacts lubricated with ultra-low sulfur diesel. Tribol. Int. 2021, 153, 106588.
[25]
Zong, L. Y.; Wu, H. X.; Lin, H.; Chen, Y. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Res. 2018, 11, 4149-4168.
[26]
Zhao, X.; Zha, X. J.; Tang, L. S.; Pu, J. H.; Ke, K.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. Self-assembled core-shell polydopamine@MXene with synergistic solar absorption capability for highly efficient solar-to-vapor generation. Nano Res. 2020, 13, 255-264.
[27]
Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137-1140.
[28]
Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M. K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C. M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446-450.
[29]
Tian, W. Q.; VahidMohammadi, A.; Reid, M. S.; Wang, Z.; Ouyang, L. Q.; Erlandsson, J.; Pettersson, T.; Wågberg, L.; Beidaghi, M.; Hamedi, M. M. Multifunctional nanocomposites with high strength and capacitance using 2D MXene and 1D nanocellulose. Adv. Mater. 2019, 31, 1902977.
[30]
Zhao, X. F.; Vashisth, A.; Prehn, E.; Sun, W. M.; Shah, S. A.; Habib, T.; Chen, Y. X.; Tan, Z. Y.; Lutkenhaus, J. L.; Radovic, M. et al. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter 2019, 1, 513-526.
[31]
Wang, Y. M.; Wang, X.; Li, X. L.; Bai, Y.; Xiao, H. H.; Liu, Y.; Liu, R.; Yuan, G. Engineering 3D ion transport channels for flexible MXene films with superior capacitive performance. Adv. Funct. Mater. 2019, 29, 1900326.
[32]
Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676-16681.
[33]
Cao, W. T.; Chen, F. F.; Zhu, Y. J.; Zhang, Y. G.; Jiang, Y. Y.; Ma, M. G.; Chen, F. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding Properties. ACS Nano 2018, 12, 4583-4593.
[34]
Rahman, M. M.; Puthirath, A. B.; Adumbumkulath, A.; Tsafack, T.; Robatjazi, H.; Barnes, M.; Wang, Z. X.; Kommandur, S.; Susarla, S.; Sajadi, S. M. et al. Fiber reinforced layered dielectric nanocomposite. Adv. Funct. Mater. 2019, 29, 1900056.
[35]
Lavoine, N.; Bras, J.; Saito, T.; Isogai, A. Improvement of the thermal stability of TEMPO-oxidized cellulose nanofibrils by heat-induced conversion of ionic bonds to amide bonds. Macromol. Rapid Commun. 2016, 37, 1033-1039.
[36]
Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368-8382.
[37]
Cheng, Z.; Liu, L. J.; Xu, S.; Lu, M.; Wang, X. W. Temperature dependence of electrical and thermal conduction in single silver nanowire. Sci. Rep. 2015, 5, 10718.
[38]
Yu, X. G.; Xie, Z. Q.; Yu, Y.; Lee, J.; Vazquez-Guardado, A.; Luan, H. W.; Ruban, J.; Ning, X.; Akhtar, A.; Li, D. F. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019, 575, 473-479.
[39]
Ma, Y. N.; Liu, N. S.; Li, L. Y.; Hu, X. K.; Zou, Z. G.; Wang, J. B.; Luo, S. J.; Gao, Y. H. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 2017, 8, 1207.
[40]
Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789-1795.
[41]
Hu, D. W.; Huang, X. Y.; Li, S. T.; Jiang, P. K. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020, 188, 107995.
[42]
Yang, M.; Cao, K. Q.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E. M.; Kieffer, J.; Thouless, M. D.; Kotov, N. A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945-6954.
[43]
Chen, W.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Flexible, Transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 16643-16653.
[44]
Zhang, Y.; Cheng, W. H.; Tian, W. X.; Lu, J. Y.; Song, L.; Liew, K. M.; Wang, B. B.; Hu, Y. Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance. ACS Appl. Mater. Interfaces 2020, 12, 6371-6382.
[45]
Zhu, J.; Zhang, H. N.; Kotov, N. A. Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for graphene. ACS Nano 2013, 7, 4818-4829.
[46]
Schulz, R. B.; Plantz, V. C.; Brush, D. R. Shielding theory and practice. IEEE Trans. Electromagn. Compat. 1988, 30, 187-201.
[47]
Wu, X. Y.; Han, B. Y.; Zhang, H. B.; Xie, X.; Tu, T. X.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z. Z. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding. Chem. Eng. J. 2020, 381, 122622.
[48]
Liu, Z. X.; Wang, W. Y.; Tan, J. J.; Liu, J.; Zhu, M. F.; Zhu, B. L.; Zhang, Q. Y. Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding. J. Mater. Chem. C 2020, 8, 7170-7180.
[49]
Lyu, J.; Wang, X. Z.; Liu, L. H.; Kim, Y.; Tanyi, E. K.; Chi, H.; Feng, W. C.; Xu, L. Z.; Li, T. H.; Noginov, M. A. et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers. Adv. Funct. Mater. 2016, 26, 8435-8445.
[50]
Kwon, S. R.; Harris, J.; Zhou, T.; Loufakis, D.; Boyd, J. G.; Lutkenhaus, J. L. Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 2017, 11, 6682-6690.
[51]
Sun, R. H.; Zhang, H. B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z. Z. Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv. Funct. Mater. 2017, 27, 1702807.
[52]
Wei, H. W.; Wang, M. Q.; Zheng, W. H.; Jiang, Z. X.; Huang, Y. 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties. Ceram. Int. 2020, 46, 6199-6204.
[53]
Wu, Z. C.; Pei, K.; Xing, L. S.; Yu, X. F.; You, W. B.; Che, R. C. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 2019, 29, 1901448.
Nano Research
Pages 2837-2845
Cite this article:
Hu D, Wang S, Zhang C, et al. Ultrathin MXene-aramid nanofiber electromagnetic interference shielding films with tactile sensing ability withstanding harsh temperatures. Nano Research, 2021, 14(8): 2837-2845. https://doi.org/10.1007/s12274-021-3297-z
Topics:

780

Views

63

Crossref

60

Web of Science

62

Scopus

12

CSCD

Altmetrics

Received: 16 November 2020
Revised: 11 December 2020
Accepted: 14 December 2020
Published: 05 February 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return