Journal Home > Volume 14 , Issue 2

C5 olefin separation is of great importance and challenge in industry with the increasing demand for synthetic rubber. However, the related study is limited due to the complex compositions and the similar boiling points. Here, we for the first time employ two anion-pillared hybrid porous materials (ZU-62 and TIFSIX-2-Cu-i) towards the challenging separation of C5 olefin mixtures (trans-2-pentene, 1-pentene and isoprene). These two adsorbents not only exhibit the unprecedented separation performance, but also show excellent recycle performance. Owing to the favorable electrostatic environment within a suitable confined space, TIFSIX-2-Cu-i is able to distinguish the three C5 olefins (trans-2-pentene, 1-pentene and isoprene) with a high uptake of trans-2-pentene (3.1 mmol·g-1). ZU-62 (also termed as NbOFFIVE-2-Cu-i) with contracted aperture size shows exclusion effect to the relatively large molecule of isoprene at low pressure range (0-6 kPa), contributing to the excellent separation selectivity of 1-pentene/isoprene (300). The excellent separation performance of ZU-62 and TIFSIX-2-Cu-i is verified by the breakthrough experiment. And interestingly, the regeneration tests show that C5 olefins can be easily desorbed from ZU-62, TIFSIX-2-Cu-i under 298 K. Moreover, the detailed adsorption behavior is further revealed by simulation studies.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Remarkable separation of C5 olefins in anion-pillared hybrid porous materials

Show Author's information Ying Yu1,§Lifeng Yang1,2,§Bin Tan3Jianbo Hu1,2Qingju Wang1Xili Cui1,2,( )Huabin Xing1,2
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
Institute of Zhejiang University - Quzhou, Quzhou 324000, China
Ningxia Coal Industry Co., Ltd, CHN Energy, Shizuishan 753200, China

§ Ying Yu and Lifeng Yang contributed equally to this work.

Abstract

C5 olefin separation is of great importance and challenge in industry with the increasing demand for synthetic rubber. However, the related study is limited due to the complex compositions and the similar boiling points. Here, we for the first time employ two anion-pillared hybrid porous materials (ZU-62 and TIFSIX-2-Cu-i) towards the challenging separation of C5 olefin mixtures (trans-2-pentene, 1-pentene and isoprene). These two adsorbents not only exhibit the unprecedented separation performance, but also show excellent recycle performance. Owing to the favorable electrostatic environment within a suitable confined space, TIFSIX-2-Cu-i is able to distinguish the three C5 olefins (trans-2-pentene, 1-pentene and isoprene) with a high uptake of trans-2-pentene (3.1 mmol·g-1). ZU-62 (also termed as NbOFFIVE-2-Cu-i) with contracted aperture size shows exclusion effect to the relatively large molecule of isoprene at low pressure range (0-6 kPa), contributing to the excellent separation selectivity of 1-pentene/isoprene (300). The excellent separation performance of ZU-62 and TIFSIX-2-Cu-i is verified by the breakthrough experiment. And interestingly, the regeneration tests show that C5 olefins can be easily desorbed from ZU-62, TIFSIX-2-Cu-i under 298 K. Moreover, the detailed adsorption behavior is further revealed by simulation studies.

Keywords: metal-organic frameworks, adsorption, separation, C5 olefin

References(30)

[1]
M. Maes,; L. Alaerts,; F. Vermoortele,; R. Ameloot,; S. Couck,; V. Finsy,; J. F. M. Denayer,; D. E. De Vos, Separation of C5-hydrocarbons on microporous materials: Complementary performance of MOFs and zeolites. J. Am. Chem. Soc. 2010, 132, 2284-2292.
[2]
K. C. Jie,; Y. J. Zhou,; E. R. Li,; R. Zhao,; M. Liu,; F. H. Huang, Linear positional isomer sorting in nonporous adaptive crystals of a pillar[5]arene. J. Am. Chem. Soc. 2018, 140, 3190-3193.
[3]
J. A. Patterson,; H. W. Scheeline, Recovery of isoprene by fractionation and extractive distillation. U.S. Patent 2426705, September 2, 1947.
[4]
P. Schwab,; M. Schulz,; R. Schulz,; S. Huber, Preparation of C5-/C6- olefins. U.S. Patent 6538168, March 25, 2003.
[5]
M. Hartmann,; S. Kunz,; D. Himsl,; O. Tangermann,; S. Ernst,; A. Wagener, Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 2008, 24, 8634-8642.
[6]
R. P. Lively,; M. J. Realff, On thermodynamic separation efficiency: Adsorption processes. AIChE J. 2016, 62, 3699-3705.
[7]
D. S. Sholl,; R. P. Lively, Seven chemical separations to change the world. Nature 2016, 532, 435-437.
[8]
T. Wang,; J. Gu,; Q. Cui,; H. Y. Wang, Study on adsorption and desorption performances of trace C4-C6 alkane mixture on MIL- 101(Cr) and WS-480. Energy Fuels 2019, 33, 7587-7594.
[9]
H. Wang,; X. L. Dong,; J. Z. Lin,; S. J. Teat,; S. Jensen,; J. Cure,; E. V. Alexandrov,; Q. B. Xia,; K. Tan,; Q. N. Wang, et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nat. Commun. 2018, 9, 1745.
[10]
H. Wang,; J. Li, Microporous metal-organic frameworks for adsorptive separation of C5-C6 alkane isomers. Acc. Chem. Res. 2019, 52, 1968-1978.
[11]
J. F. M. Denayer,; R. A. Ocakoglu,; I. C. Arik,; C. E. A. Kirschhock,; J. A. Martens,; G. V. Baron, Rotational entropy driven separation of alkane/isoalkane mixtures in zeolite cages. Angew. Chem., Int. Ed. 2005, 44, 400-403.
[12]
D. Peralta,; G. Chaplais,; A. Simon-Masseron,; K. Barthelet,; G. D. Pirngruber, Separation of C6 paraffins using zeolitic imidazolate frameworks: Comparison with zeolite 5A. Ind. Eng. Chem. Res. 2012, 51, 4692-4702.
[13]
A. Cadiau,; Y. Belmabkhout,; K. Adil,; P. M. Bhatt,; R. S. Pillai,; A. Shkurenko,; C. Martineau-Corcos,; G. Maurin,; M. Eddaoudi, Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science 2017, 356, 731-735.
[14]
O. M. Yaghi,; M. O'Keeffe,; N. W. Ockwig,; H. K. Chae,; M. Eddaoudi,; J. Kim, Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.
[15]
S. Kitagawa,; R. Kitaura,; S. Noro, Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334-2375.
[16]
N. W. Ockwig,; O. Delgado-Friedrichs,; M. O'Keeffe,; O. M. Yaghi, Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 2005, 38, 176-182.
[17]
S. Kitagawa, Porous materials and the age of gas. Angew. Chem., Int. Ed. 2015, 54, 10686-10687.
[18]
J. R. Li,; R. J. Kuppler,; H. C. Zhou, Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477-504.
[19]
Z. B. Bao,; G. G. Chang,; H. B. Xing,; R. Krishna,; Q. L. Ren,; B. L. Chen, Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy Environ. Sci. 2016, 9, 3612-3641.
[20]
H. Li,; L. B. Li,; R. B. Lin,; W. Zhou,; Z. L. Zhang,; S. C. Xiang,; B. L. Chen, Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem 2019, 1, 100006.
[21]
L. B. Li,; R. B. Lin,; R. Krishna,; H. Li,; S. C. Xiang,; H. Wu,; J. P. Li,; W. Zhou,; B. L. Chen, Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 2018, 362, 443-446.
[22]
P. Nugent,; Y. Belmabkhout,; S. D. Burd,; A. J. Cairns,; R. Luebke,; K. Forrest,; T. Pham,; S. Q. Ma,; B. Space,; L. Wojtas, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013, 495, 80-84.
[23]
A. Cadiau,; K. Adil,; P. M. Bhatt,; Y. Belmabkhout,; M. Eddaoudi, A metal-organic framework-based splitter for separating propylene from propane. Science 2016, 353, 137-140.
[24]
Z. Q. Zhang,; Q. W. Yang,; X. L. Cui,; L. F. Yang,; Z. B. Bao,; Q. L. Ren,; H. B. Xing, Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew. Chem., Int. Ed. 2017, 129, 16500-16505.
[25]
L. F. Yang,; X. L. Cui,; Q. W. Yang,; S. H. Qian,; H. Wu,; Z. B. Bao,; Z. G. Zhang,; Q. L. Ren,; W. Zhou,; B. L. Chen, et al. A single-molecule propyne trap: Highly efficient removal of propyne from propylene with anion-pillared ultramicroporous materials. Adv. Mater. 2018, 30, 1705374.
[26]
L. F. Yang,; X. L. Cui,; Y. B. Zhang,; Q. W. Yang,; H. B. Xing, A highly sensitive flexible metal-organic framework sets a new benchmark for separating propyne from propylene. J. Mater. Chem. A 2018, 6, 24452-24458.
[27]
K. J. Chen,; H. S. Scott,; D. G. Madden,; T. Pham,; A. Kumar,; A. Bajpai,; M. Lusi,; K. A. Forrest,; B. Space,; J. J. Perry, et al. Benchmark C2H2/CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem 2016, 1, 753-765.
[28]
L. F. Yang,; X. L. Cui,; Z. Q. Zhang,; Q. W. Yang,; Z. B. Bao,; Q. L. Ren,; H. B. Xing, An asymmetric anion-pillared metal-organic framework as a multisite adsorbent enables simultaneous removal of propyne and propadiene from propylene. Angew. Chem., Int. Ed. 2018, 57, 13145-13149.
[29]
M. D. Jiang,; X. L. Cui,; L. F. Yang,; Q. W. Yang,; Z. G. Zhang,; Y. W. Yang,; H. B. Xing, A thermostable anion-pillared metal-organic framework for C2H2/C2H4 and C2H2/CO2 separations. Chem. Eng. J. 2018, 352, 803-810.
[30]
M. D. Segall,; P. J. D. Lindan,; M. J. Probert,; C. J. Pickard,; P. J. Hasnip,; S. J. Clark,; M. C. Payne, First-principles simulation: Ideas, illustrations and the castep code. J. Phys.: Condens. Matter. 2002, 14, 2717-2744.
File
12274_2020_2831_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2020
Revised: 14 April 2020
Accepted: 25 April 2020
Published: 22 May 2020
Issue date: February 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LR20B060001), the Key Research and Development Program of Ningxia (No. 2018BDE02057), the National Natural Science Foundation of China (No. U1862110 and 21938011), Zhejiang University Academic Award for Outstanding Doctoral Candidates, and the Research Computing Center in College of Chemical and Biological Engineering at Zhejiang University. The single-crystal X-ray diffraction data of TIFSIX-2-Cu-i have been deposited in the Cambridge Crystallographic Data Centre under accession number CCDC: 1857691.

Return