Journal Home > Volume 12 , Issue 3

Our scanning tunneling microscopy (STM) study observes, for the first time, twin domain boundary (TDB) formations on the surface of WTe2 single crystal, which is glued by solidifying indium to Si substrate. In these TDB regions, a large inhomogeneous strain field, especially a critical shear strain of about 7%, is observed by geometric phase analysis. This observation does not obey the old believe that a small mechanical stress is sufficient to drive thermally-induced TDB formations in two-dimensional materials. To resolve the contradiction, we perform density functional theory calculations combined with elasticity theory analysis, which show that TDBs on WTe2 are entirely displacement-induced, for which a critical strain is necessary to overcome the onset barrier.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Formation mechanism of twin domain boundary in 2D materials: The case for WTe2

Show Author's information Guan-Yong Wang1,§Weiyu Xie2,3,§Dan Xu1Hai-Yang Ma1Hao Yang1Hong Lu4Hao-Hua Sun1Yao-Yi Li1Shuang Jia4Liang Fu5Shengbai Zhang2( )Jin-Feng Jia1,6( )
Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education),School of Physics and Astronomy, Shanghai Jiao Tong University,Shanghai,200240,China;
Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Institute of Chemical Materials,China Academy of Engineering Physics (CAEP), P. O. Box 919-327,Mianyang,621900,China;
International Center for Quantum Materials,School of Physics, Peking University,Beijing,100084,China;
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Tsung-Dao Lee Institute, Shanghai 200240, China

§ Guan-Yong Wang and Weiyu Xie contributed equally to this work.

Abstract

Our scanning tunneling microscopy (STM) study observes, for the first time, twin domain boundary (TDB) formations on the surface of WTe2 single crystal, which is glued by solidifying indium to Si substrate. In these TDB regions, a large inhomogeneous strain field, especially a critical shear strain of about 7%, is observed by geometric phase analysis. This observation does not obey the old believe that a small mechanical stress is sufficient to drive thermally-induced TDB formations in two-dimensional materials. To resolve the contradiction, we perform density functional theory calculations combined with elasticity theory analysis, which show that TDBs on WTe2 are entirely displacement-induced, for which a critical strain is necessary to overcome the onset barrier.

Keywords: density functional theory, scanning tunneling microscopy (STM), strain, twin domain boundary, WTe2

References(36)

1

Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

2

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

3

Li, W. B.; Li, J. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers. Nat. Commun. 2016, 7, 10843.

4

Li, Y.; Duerloo, K. A. N.; Wauson, K.; Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 2016, 7, 10671.

5

Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391-396.

6

Barja, S.; Wickenburg, S.; Liu, Z. F.; Zhang, Y.; Ryu, H.; Ugeda, M. M.; Hussain, Z.; Shen, Z. X.; Mo, S. K.; Wong, E. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 2016, 12, 751-756.

7

Liu, H. J.; Jiao, L.; Yang, F.; Cai, Y.; Wu, X. X.; Ho, W.; Gao, C. L.; Jia, J. F.; Wang, N.; Fan, H. et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett. 2014, 113, 066105.

8

Ugeda, M. M.; Pulkin, A.; Tang, S. J.; Ryu, H.; Wu, Q. S.; Zhang, Y.; Wong, D.; Pedramrazi, Z.; Martín-Recio, A.; Chen, Y. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 2018, 9, 3401.

9

Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor−metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2016, 16, 188-193.

10

Kim, J. J.; Park, C.; Yamaguchi, W.; Shiino, O.; Kitazawa, K.; Hasegawa, T. Observation of a phase transition from the T phase to the H phase induced by a STM tip in 1T-TaS2. Phys. Rev. B 1997, 56, R15573.

11

Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344-1347.

12

Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.

13

Mei, H. X.; Landis, C. M.; Huang, R. Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech. Mater. 2011, 43, 627-642.

14

Quereda, J.; San-Jose, P.; Parente, V.; Vaquero-Garzon, L.; Molina-Mendoza, A. J.; Agrait, N.; Rubio-Bollinger, G.; Guinea, F.; Roldan, R.; Castellanos-Gomez, A. Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 2016, 16, 2931-2937.

15

van Swygenhoven, H.; Derlet, P. M.; Frøseth, A. G. Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 2004, 3, 399-403.

16

Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter. 2015, 27, 313201.

17

Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H. S. J.; Steele, G. A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2015, 2, 015006.

18

Wu, Y. F.; Chew, A. R.; Rojas, G. A.; Sini, G.; Haugstad, G.; Belianinov, A.; Kalinin, S. V.; Li, H.; Risko, C.; Brédas, J. L. et al. Strain effects on the work function of an organic semiconductor. Nat. Commun. 2016, 7, 10270.

19

Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361-5366.

20

Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660-1666.

21

Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197-212.

22

Kushima, A.; Qian, X. F.; Zhao, P.; Zhang, S. L.; Li, J. Ripplocations in van der Waals layers. Nano Lett. 2015, 15, 1302-1308.

23

Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P. et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 514, 205-208.

24

Berry, J.; Zhou, S. S.; Han, J.; Srolovitz, D. J.; Haataja, M. P. Dynamic phase engineering of bendable transition metal dichalcogenide monolayers. Nano Lett. 2017, 17, 2473-2481.

25

Luo, S. W.; Hao, G. L.; Fan, Y. P.; Kou, L. Z.; He, C. Y.; Qi, X.; Tang, C.; Li, J.; Huang, K.; Zhong, J. X. Formation of ripples in atomically thin MoS2 and local strain engineering of electrostatic properties. Nanotechnology 2015, 26, 105705.

26

Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131-146.

27

Cullis, A. G.; Midgley, P. A. Microscopy of Semiconducting Materials 2007. Springer: Cambridge, UK, 2008; pp 199-202.

28

Azizi, A.; Zou, X. L.; Ercius, P.; Zhang, Z. H.; Elías, A. L.; Perea-López, N.; Stone, G.; Terrones, M.; Yakobson, B. I.; Alem, N. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 2014, 5, 4867.

29

Liu, Y.; Li, Y. Y.; Rajput, S.; Gilks, D.; Lari, L.; Galindo, P. L.; Weinert, M.; Lazarov, V. K.; Li, L. Tuning Dirac states by strain in the topological insulator Bi2Se3. Nat. Phys. 2014, 10, 294-299.

30

Vítek, V. Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 1968, 18, 773-786.

31

Rice, J. R. Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 1992, 40, 239-271.

32

Tadmor, E. B.; Hai, S. A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 2003, 51, 765-793.

33

Tang, S.; Mahanti, S. D.; Kalia, R. K. Ferroelastic phase transition in two-dimensional molecular solids. Phys. Rev. Lett. 1986, 56, 484.

34

Ma, Y. J.; Diaz, H. C.; Avila, J.; Chen, C. Y.; Kalappattil, V.; Das, R.; Phan, M. H.; Čadež, T.; Carmelo, J. M. P.; Asensio, M. C. et al. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary. Nat. Commun. 2017, 8, 14231.

35

van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554-561.

36

Tang, E.; Fu, L. Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators. Nat. Phys. 2014, 10, 964-969.

File
12274_2018_2255_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 August 2018
Revised: 21 October 2018
Accepted: 25 November 2018
Published: 12 December 2018
Issue date: March 2019

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Acknowledgements

Acknowledgements

We thank the Ministry of Science and Technology of China (Nos. 2016YFA0301003 and 2016YFA0300403), the National Natural Science Foundation of China (Nos. 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201, 11655002, and U1632272) for partial support. W. Y. X. was supported by the National Science Foundation Award (No. DMR-1305293). S. B. Z. was supported by the US Department of Energy (DOE) (No. DESC0002623). The supercomputer time sponsored by National energy aesearch scientific computing center (NERSC) under DOE contract (No. DE-AC02-05CH11231) and the Center for Computational Innovations (CCI) at Rensselaer Polytechnic Institute (RPI) are also acknowledged. This project has been supported by a grant from Science and Technology Commission of Shanghai Municipality (No. 16DZ2260200) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB28000000).

G.-Y. W. conducted the STM experiments with the help from D. X., H-Y. M., H. Y. and H.-H. S.. J.-F. J. designed the experiments with the help from L. F. and S.-B. Z.. H. L. and S. J. grew the WTe2 single crystals. W. X. performed the first-principle calculations with the help of S.-B. Z.. G.-Y. W., W. X., S.-B. Z. and J.-F. J. wrote the paper. All authors participated in the discussions.

Return