Journal Home > Volume 11 , Issue 4

Based on the unique advantages of fluorescent silicon nanoparticles (SiNPs), long circulation red blood cells (RBCs), and anti-cancer drug molecules (i.e., doxorubicin (DOX)), we developed multifunctional DOX-loaded SiNPs impregnated into RBCs. Importantly, the resulting drug delivery systems (DDSs) simultaneously exhibited bright fluorescence coupled with robust photostability (i.e., ~ 24% loss of fluorescent intensity after 25 min continuous laser irradiation) and significantly lengthened blood residency (i.e., t1/2 = 7.31 ± 0.96 h, 3.9-fold longer than pure DOX-loaded SiNPs). Therefore, this novel DDS featuring multi-functionalities shows high potential for cancer diagnosis and therapy, particularly for tumor imaging and chemotherapy in a synchronous manner.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency

Show Author's information Airui Jiang§Bin Song§Xiaoyuan JiFei PengHouyu WangYuanyuan SuYao He( )
Laboratory of Nanoscale Biochemical AnalysisJiangsu Key Laboratory for Carbon-Based Functional Materials and DevicesInstitute of Functional Nano & Soft Materials (FUNSOM)and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)Soochow UniversitySuzhou215123China

§ Airui Jiang and Bin Song contributed equally to this work.

Abstract

Based on the unique advantages of fluorescent silicon nanoparticles (SiNPs), long circulation red blood cells (RBCs), and anti-cancer drug molecules (i.e., doxorubicin (DOX)), we developed multifunctional DOX-loaded SiNPs impregnated into RBCs. Importantly, the resulting drug delivery systems (DDSs) simultaneously exhibited bright fluorescence coupled with robust photostability (i.e., ~ 24% loss of fluorescent intensity after 25 min continuous laser irradiation) and significantly lengthened blood residency (i.e., t1/2 = 7.31 ± 0.96 h, 3.9-fold longer than pure DOX-loaded SiNPs). Therefore, this novel DDS featuring multi-functionalities shows high potential for cancer diagnosis and therapy, particularly for tumor imaging and chemotherapy in a synchronous manner.

Keywords: fluorescent silicon nanoparticles, drug delivery system, multi-function, red blood cells

References(52)

1

Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.

2

Yan, J.; Hu, C. Y.; Wang, P.; Zhao, B.; Ouyang, X. Y.; Zhou, J.; Liu, R.; He, D. N.; Fan, C. H.; Song, S. P. Growth and origami folding of DNA on nanoparticles for highefficiency molecular transport in cellular imaging and drug delivery. Angew. Chem., Int. Ed. 2015, 54, 2431–2435.

3

Yoo, J. -W.; Irvine, D. J.; Discher, D. E.; Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521–535.

4

Meyer, R. A.; Sunshine, J. C.; Green, J. J. Biomimetic particles as therapeutics. Trends Biotechnol. 2015, 33, 514–524.

5

Tibbitt, M. W.; Dahlman, J. E.; Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016, 138, 704–717.

6

Parodi, A.; Quattrocchi, N.; Van De Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 2013, 8, 61–68.

7

Fang, R. H.; Hu, C. -M. J.; Luk, B. T.; Gao, W. W.; Copp, J. A.; Tai, Y. Y.; O'Connor, D. E.; Zhang, L. F. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014, 14, 2181–2188.

8

Gao, W. W.; Fang, R. H.; Thamphiwatana, S.; Luk, B. T.; Li, J. M.; Angsantikul, P. Z.; Zhang, Q. Z.; Hu, C. -M. J.; Zhang, L. F. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015, 15, 1403–1409.

9

Hu, C. -M. J.; Fang, R. H.; Wang, K. -C.; Luk, B. T.; Thamphiwatana, S.; Dehaini, D.; Nguyen, P.; Angsantikul, P.; Wen, C. H.; Kroll, A. V. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015, 526, 118–121.

10

Raemdonck, K.; Braeckmans, K.; Demeester, J.; De Smedt, S. C. Merging the best of both worlds: Hybrid lipidenveloped matrix nanocomposites in drug delivery. Chem. Soc. Rev. 2014, 43, 444–472.

11

Sun, X. Q.; Wang, C.; Gao, M.; Hu, A. Y.; Liu, Z. Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv. Funct. Mater. 2015, 25, 2386–2394.

12

Green, J. J.; Elisseeff, J. H. Mimicking biological functionality with polymers for biomedical applications. Nature 2016, 540, 386–394.

13

Magnani, M.; Sfara, C.; Antonelli, A. Intravascular contrast agents in diagnostic applications: Use of red blood cells to improve the lifespan and efficacy of blood pool contrast agents. Nano Res. 2017, 10, 731–766.

14

Shi, J.; Kundrat, L.; Pishesha, N.; Bilate, A.; Theile, C.; Maruyama, T.; Dougan, S. K.; Ploegh, H. L.; Lodish, H. F. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc. Natl. Acad. Sci. USA 2014, 111, 10131–10136.

15

Peng, F.; Tu, Y. F.; van Hest, J. C. M.; Wilson, D. A. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew. Chem., Int. Ed. 2015, 54, 11662–11665.

16

Hu, C. -M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985.

17

Luk, B. T.; Fang, R. H.; Hu, C. -M. J.; Copp, J. A.; Thamphiwatana, S.; Dehaini, D.; Gao, W. W.; Zhang, K.; Li, S. L.; Zhang, L. F. Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 2016, 6, 1004–1011.

18

Fu, Q.; Lv, P. P.; Chen, Z. K.; Ni, D. Z.; Zhang, L. J.; Yue, H.; Yue, Z. G.; Wei, W.; Ma, G. H. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale 2015, 7, 4020–4030.

19

Zhou, J.; Yang, Y.; Zhang, C. -Y. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application. Chem. Rev. 2015, 115, 11669–11717.

20

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

21

Wu, Z. G.; de ávila, B. E. -F.; Martín, A.; Christianson, C.; Gao, W. W.; Thamphiwatana, S. K.; Escarpa, A.; He, Q.; Zhang, L. F.; Wang, J. RBC micromotors carrying multiple cargos towards potential theranostic applications. Nanoscale 2015, 7, 13680–13686.

22

Dehaini, D.; Wei, X. L.; Fang, R. H.; Masson, S.; Angsantikul, P.; Luk, B. T.; Zhang, Y.; Ying, M.; Jiang, Y.; Kroll, A. V. et al. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv. Mater. 2017, 29, 1606209.

23

Howes, P. D.; Chandrawati, R.; Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 2014, 346, 1247390.

24

Qing, Q.; Jiang, Z.; Xu, L.; Gao, R. X.; Mai, L. Q.; Lieber, C. M. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 2014, 9, 142–147.

25

Cheng, X. Y.; Lowe, S. B.; Reece, P. J.; Gooding, J. J. Colloidal silicon quantum dots: From preparation to the modification of self-assembled monolayers (SAMs) for bio-applications. Chem. Soc. Rev. 2014, 43, 2680–2700.

26

Yu, T.; Wang, F.; Xu, Y.; Ma, L. L.; Pi, X. D.; Yang, D. R. Graphene coupled with silicon quantum dots for highperformance bulk-silicon-based Schottky-Junction photodetectors. Adv. Mater. 2016, 28, 4912–4919.

27

Kim, D.; Zuidema, J. M.; Kang, J.; Pan, Y. L.; Wu, L. B.; Warther, D.; Arkles, B.; Sailor, M. J. Facile surface modification of hydroxylated silicon nanostructures using heterocyclic silanes. J. Am. Chem. Soc. 2016, 138, 15106–15109.

28

McVey, B. F. P.; Tilley, R. D. Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc. Chem. Res. 2014, 47, 3045–3051.

29

Peng, F.; Su, Y. Y.; Zhong, Y. L.; Fan, C. H.; Lee, S. -T.; He, Y. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 2014, 47, 612–623.

30

Montalti, M.; Cantelli, A.; Battistelli, G. Nanodiamonds and silicon quantum dots: Ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 2015, 44, 4853–4921.

31

Pang, J. Y.; Su, Y. Y.; Zhong, Y. L.; Peng, F.; Song, B.; He, Y. Fluorescent silicon nanoparticle-based gene carriers featuring strong photostability and feeble cytotoxicity. Nano Res. 2016, 9, 3027–3037.

32

Zhong, Y. L.; Peng, F.; Bao, F.; Wang, S. Y.; Ji, X. Y.; Yang, L.; Su, Y. Y.; Lee, S. -T.; He, Y. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J. Am. Chem. Soc. 2013, 135, 8350–8356.

33

Li, Q.; Luo, T. -Y.; Zhou, M.; Abroshan, H.; Huang, J. C.; Kim, H. J.; Rosi, N. L.; Shao, Z. Z.; Jin, R. C. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law. ACS Nano 2016, 10, 8385–8393.

34

Ji, X. Y.; Peng, F.; Zhong, Y. L.; Su, Y. Y.; Jiang, X. X.; Song, C. X.; Yang, L.; Chu, B. B.; Lee, S. -T.; He, Y. Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in-vivo cancer therapy. Adv. Mater. 2015, 27, 1029–1034.

35

Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

36

Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem., Int. Ed. 2007, 46, 7548–7558.

37

Peng, F.; Su, Y. Y.; Wei, X.; Lu, Y. P.; Zhou, Y. F.; Zhong, Y. L.; Lee, S. -T.; He, Y. Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew. Chem., Int. Ed. 2013, 52, 1457–1461.

38

Kolesnikova, T. A.; Skirtach, A. G.; Möhwald, H. Red blood cells and polyelectrolyte multilayer capsules: Natural carriers versus polymer-based drug delivery vehicles. Exp. Opin. Drug Deliv. 2013, 10, 47–58.

39

Wang, C.; Sun, X. Q.; Cheng, L.; Yin, S. N.; Yang, G. B.; Li, Y. G.; Liu, Z. Multifunctional theranostic red blood cells for magnetic-field-enhanced in vivo combination therapy of cancer. Adv. Mater. 2014, 26, 4794–4802.

40

Purow, B.; Schiff, D. Advances in the genetics of glioblastoma: Are we reaching critical mass? Nat. Rev. Neurol. 2009, 5, 419–426.

41

Zhong, Y. L.; Peng, F.; Wei, X. P.; Zhou, Y. F.; Wang, J.; Jiang, X. X.; Su, Y. Y.; Su, S.; Lee, S. T.; He, Y. Microwaveassisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew. Chem., Int. Ed. 2012, 51, 8485–8489.

42

Luk, B. T.; Zhang, L. F. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Release 2015, 220, 600–607.

43

Li, B. L.; Setyawati, M. I.; Chen, L. Y.; Xie, J. P.; Ariga, K.; Lim, C. -T.; Garaj, S.; Leong, D. T. Directing assembly and disassembly of 2D MoS2 nanosheets with DNA for drug delivery. ACS Appl. Mater. Interfaces 2017, 9, 15286–15296.

44

Rim, H. P.; Min, K. H.; Lee, H. J.; Jeong, S. Y.; Lee, S. C. pH-tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew. Chem., Int. Ed. 2011, 50, 8853–8857.

45

Minchinton, A. I.; Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 2006, 6, 583–592.

46

Ren, X. Q.; Zheng, R.; Fang, X. L.; Wang, X. F.; Zhang, X. Y.; Yang, W. L.; Sha, X. Y. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials 2016, 92, 13–24.

47

Su, J. H.; Sun, H. P.; Meng, Q. S.; Yin, Q.; Tang, S.; Zhang, P. C.; Chen, Y.; Zhang, Z. W.; Yu, H. J.; Li, Y. P. Long circulation red-blood-cell-mimetic nanoparticles with peptideenhanced tumor penetration for simultaneously inhibiting growth and lung metastasis of breast cancer. Adv. Funct. Mater. 2016, 26, 1243–1252.

48

Setyawati, M. I.; Tay, C. Y.; Docter, D.; Stauber, R. H.; Leong, D. T. Understanding and exploiting nanoparticles' intimacy with the blood vessel and blood. Chem. Soc. Rev. 2015, 44, 8174–8199.

49

Setyawati, M. I.; Tay, C. Y.; Chia, S. L.; Goh, S. L.; Fang, W.; Neo, M. J.; Chong, H. C.; Tan, S. M.; Loo, S. C.; Ng, K. W. et al. Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 2013, 4, 1673.

50

Setyawati, M. I.; Mochalin, V. N.; Leong, D. T. Tuning endothelial permeability with functionalized nanodiamonds. ACS Nano 2016, 10, 1170–1181.

51

Tay, C. Y.; Setyawati, M. I.; Leong, D. T. Nanoparticle density: A critical biophysical regulator of endothelial permeability. ACS Nano 2017, 11, 2764–2772.

52

Setyawati, M. I.; Tay, C. Y.; Bay, B. H.; Leong, D. T. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano 2017, 11, 5020–5030.

File
12274_2017_1850_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 July 2017
Revised: 10 September 2017
Accepted: 11 September 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We express our grateful thanks to Prof. Shuit-Tong Lee for general help and valuable suggestion. We appreciate financial support from the National Basic Research Program of China (No. 2013CB934400), the National Natural Science Foundation of China (Nos. 61361160412 and 31400860), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), 111 Project as well as Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC).

Return