Journal Home > Volume 11 , Issue 4

A flexible and free-standing multichannel carbon nanofiber (MCNF) film electrode was fabricated through electrospinning and carbonization. After high-temperature treatment of MCNFs in vacuum, the obtained fibers (MCNFs-V) had a dilated interlayer spacing of graphene sheets (0.398 nm) and an ultra-low specific surface area (15.3 m2/g). When used as an anode for sodium-ion batteries, the MCNFs-V showed a discharge plateau below 0.1 V, and sodium was intercalated into the stacked graphene sheets layers during the sodiation process. The MCNFs-V exhibited a reversible and high specific capacity of 222 mAh/g at a current density of 0.1 A/g after 100 cycles and excellent long-term cycling stability, which was superior to that of MCNFs. The improved sodium storage performance was attributed to the unique microstructure of the MCNFs-V with an enlarged interlayer spacing of graphene sheets for sodium intercalation. The MCNFs-V electrode holds great promise as an anode material for commercial sodium-ion batteries.

File
12274_2017_1847_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 June 2017
Revised: 03 September 2017
Accepted: 08 September 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21373195, 51674228, and 51622210), the National Key Research and Development Program of China (No. 2016YFB0100305), the Fundamental Research Funds for the Central Universities (Nos. WK3430000004 and WK2320000034), the Collaborative Innovation Center of Suzhou Nano Science and Technology. Q. S. W. is supported by Youth Innovation Promotion Association CAS (No. 2013286).

Return