Journal Home > Volume 11 , Issue 4

In the study of the fabrication of DNA-templated silver nanoclusters (DNA-Ag NCs), how templates affect the fluorescence of the nanoclusters remains unclear, and it has been a challenge to understand the correlation between the properties of the DNA template and the Ag NCs. In this respect, based on the rational design of a series of structurally defined intramolecular G-quadruplexes, we prepared G-quadruplex-templated Ag NCs with a defined G-tetrad-to-silver ratio of 1:2. We evaluated the effect of G-quadruplex topology and loop sequences on the fluorescence of DNA-Ag NCs using circular dichroism, and extinction and emission spectroscopy. G-quadruplex templates with an anti-parallel topology were found to produce Ag NCs with stronger fluorescence compared with parallel and hybrid configurations. Loop bases adjacent to G-tetrads have a more significant impact on the fluorescence of Ag NCs compared with those in the middle of the loop, with adenine largely exhibiting an enhancement effect and thymine being detrimental. Generally, G-quadruplexes having an anti-parallel topology with adenine in the loop adjacent to the G-tetrad would be good templates for producing highly fluorescent Ag NCs. This is the first study to focus on the correlation between G-quadruplex topology/sequence and the optical properties of Ag NCs. We hope that the results of this study will facilitate a more in-depth understanding of correlation between G-quadruplex templates and Ag NCs, and help to understand and utilize their unique attributes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

How G-quadruplex topology and loop sequences affect optical properties of DNA-templated silver nanoclusters

Show Author's information Guangyu TaoYang ChenRuoyun LinJiang ZhouXiaojing PeiFeng LiuNa Li( )
Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationInstitute of Analytical ChemistryCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China

Abstract

In the study of the fabrication of DNA-templated silver nanoclusters (DNA-Ag NCs), how templates affect the fluorescence of the nanoclusters remains unclear, and it has been a challenge to understand the correlation between the properties of the DNA template and the Ag NCs. In this respect, based on the rational design of a series of structurally defined intramolecular G-quadruplexes, we prepared G-quadruplex-templated Ag NCs with a defined G-tetrad-to-silver ratio of 1:2. We evaluated the effect of G-quadruplex topology and loop sequences on the fluorescence of DNA-Ag NCs using circular dichroism, and extinction and emission spectroscopy. G-quadruplex templates with an anti-parallel topology were found to produce Ag NCs with stronger fluorescence compared with parallel and hybrid configurations. Loop bases adjacent to G-tetrads have a more significant impact on the fluorescence of Ag NCs compared with those in the middle of the loop, with adenine largely exhibiting an enhancement effect and thymine being detrimental. Generally, G-quadruplexes having an anti-parallel topology with adenine in the loop adjacent to the G-tetrad would be good templates for producing highly fluorescent Ag NCs. This is the first study to focus on the correlation between G-quadruplex topology/sequence and the optical properties of Ag NCs. We hope that the results of this study will facilitate a more in-depth understanding of correlation between G-quadruplex templates and Ag NCs, and help to understand and utilize their unique attributes.

Keywords: silver nanoclusters, G-quadruplex, topology, loop sequence

References(53)

1

Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409–431.

2

Díez, I.; Ras, R. H. A. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970.

3

Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nanotoday 2011, 6, 401–418.

4

Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.

5

Obliosca, J. M.; Liu, C.; Yeh, H. C. Fluorescent silver nanoclusters as DNA probes. Nanoscale 2013, 5, 8443–8461.

6

Vosch, T.; Antoku, Y.; Hsiang, J. C.; Richards, C. I.; Gonzalez, J. I.; Dickson, R. M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci. USA 2007, 104, 12616– 12621.

7

Gwinn, E. G.; O'Neill, P.; Guerrero, A. J.; Bouwmeester, D.; Fygenson, D. K. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv. Mater. 2008, 20, 279–283.

8

Richards, C. I.; Choi, S.; Hsiang, J.C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. Oligonucleotide- stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039.

9

Guo, W. W.; Yuan, J. P.; Dong, Q. Z.; Wang, E. K. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J. Am. Chem. Soc. 2010, 132, 932–934.

10

Lan, G. Y.; Huang, C. C.; Chang, H. T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem. Commun. 2010, 46, 1257–1259.

11

Yeh, H. C.; Sharma, J.; Han, J. J.; Martinez, J. S.; Werner, J. H. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett. 2010, 10, 3106–3110.

12

Li, T.; Zhang, L. B.; Ai, J.; Dong, S. J.; Wang, E. K. Ion- tuned DNA/Ag fluorescent nanoclusters as versatile logic device. Acs Nano 2011, 5, 6334–6338.

13

Li, J. J.; Zhong, X. Q.; Zhang, H. Q.; Le, X. C.; Zhu, J. J. Binding-induced fluorescence turn-on assay using aptamer- functionalized silver nanocluster DNA probes. Anal. Chem. 2012, 84, 5170–5174.

14

Liu, X. Q.; Wang, F.; Aizen, R.; Yehezkeli, O.; Willner, I. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: Functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J. Am. Chem. Soc. 2013, 135, 11832–11839.

15

Liu, J. W. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development. TrACTrend. Anal. Chem. 2014, 58, 99–111.

16

Gwinn, E.; Schultz, D.; Copp, S. M.; Swasey, S. DNA- protected silver clusters for nanophotonics. Nanomaterials 2015, 5, 180–207.

17

Shao, C. Y.; Yuan, B.; Wang, H. Q.; Zhou, Q.; Li, Y. L.; Guan, Y. F.; Deng, Z. X. Eggshell membrane as a multimodal solid state platform for generating fluorescent metal nanoclusters. J. Mater. Chem. 2011, 21, 2863–2866.

18

Copp, S. M.; Bogdanov, P.; Debord, M.; Singh, A.; Gwinn, E. Base motif recognition and design of DNA templates for fluorescent silver clusters by machine learning. Adv. Mater. 2014, 26, 5839–5845.

19

Copp, S. M.; Schultz, D.; Swasey, S.; Pavlovich, J.; Debord, M.; Chiu, A.; Olsson, K.; Gwinn, E. Magic numbers in DNA-stabilized fluorescent silver clusters lead to magic colors. J. Phys. Chem. Lett. 2014, 5, 959–963.

20

Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA- templated Ag nanocluster formation. J. Am. Chem. Soc. 2004, 126, 5207–5212.

21

Ritchie, C. M.; Johnsen, K. R.; Kiser, J. R.; Antoku, Y.; Dickson, R. M.; Petty, J. T. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C 2007, 111, 175–181.

22

Sengupta, B.; Springer, K.; Buckman, J. G.; Story, S. P.; Abe, O. H.; Hasan, Z. W.; Prudowsky, Z. D.; Rudisill, S. E.; Degtyareva, N. N.; Petty, J. T. DNA templates for fluorescent silver clusters and I-motif folding. J. Phys. Chem. C 2009, 113, 19518–19524.

23

Ai, J.; Guo, W. W.; Li, B. L.; Li, T.; Li, D.; Wang, E. K. DNA G-quadruplex-templated formation of the fluorescent silver nanocluster and its application to bioimaging. Talanta 2012, 88, 450–455.

24

Neidig, M. L.; Sharma, J.; Yeh, H. C.; Martinez, J. S.; Conradson, S. D.; Shreve, A. P. Ag K-Edge EXAFS analysis of DNA-templated fluorescent silver nanoclusters: Insight into the structural origins of emission tuning by DNA sequence variations. J. Am. Chem. Soc. 2011, 133, 11837–11839.

25

Petty, J. T.; Sergev, O. O.; Ganguly, M.; Rankine, I. J.; Chevrier, D. M.; Zhang, P. A segregated, partially oxidized, and compact Ag10 cluster within an encapsulating DNA host. J. Am. Chem. Soc. 2016, 138, 3469–3477.

26

Schultz, D.; Gwinn, E. G. Silver atom and strand numbers in fluorescent and dark Ag: DNAs. Chem. Commun. 2012, 48, 5748–5750.

27

Schultz, D.; Gardner, K.; Oemrawsingh, S. S. R.; Markešević, N.; Olsson, K.; Debord, M.; Bouwmeester, D.; Gwinn, E. Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv. Mater. 2013, 25, 2797–2803.

28

O'Neill, P. R.; Velazquez, L. R.; Dunn, D. G.; Gwinn, E. G.; Fygenson, D. K. Hairpins with poly-C loops stabilize four types of fluorescent Agn: DNA. J. Phys. Chem. C 2009, 113, 4229–4233.

29

Morishita, K.; MacLean, J. L.; Liu, B. W.; Jiang, H.; Liu, J. W. Correlation of photobleaching, oxidation and metal induced fluorescence quenching of DNA-templated silver nanoclusters. Nanoscale 2013, 5, 2840–2849.

30

Li, J.; Jia, X. F.; Li, D. Y.; Ren, J. T.; Han, Y. C.; Xia, Y.; Wang, E. K. Stem-directed growth of highly fluorescent silver nanoclusters for versatile logic devices. Nanoscale 2013, 5, 6131–6138.

31

Lan, G. Y.; Chen, W. Y.; Chang, H. T. Control of synthesis and optical properties of DNA templated silver nanoclusters by varying DNA length and sequence. RSC Adv. 2011, 1, 802–807.

32

Feng, L. Y.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Toward site- specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds. Nucleic Acids. Res. 2012, 40, e122.

33

Weadick, D. S.; Liu, J. W. Phosphorothioate DNA stabilized fluorescent gold and silver nanoclusters. Nanomaterials 2015, 5, 804–813.

34

Walczak, S.; Morishita, K.; Ahmed, M.; Liu, J. W. Towards understanding of poly-guanine activated fluorescent silver nanoclusters. Nanotechnology 2014, 25, 155501.

35

Li, T. T.; He, N. Y.; Wang, J. H.; Li, S.; Deng, Y.; Wang, Z. L. Effects of the i-motif DNA loop on the fluorescence of silver nanoclusters. RSC Adv. 2016, 6, 22839–22844.

36

Burge, S.; Parkinson, G. N.; Hazel, P.; Todd, A. K.; Neidle, S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids. Res. 2006, 34, 5402–5415.

37

Ma, D. L.; Che, C. M.; Yan, S. C. Platinum(Ⅱ) complexes with dipyridophenazine ligands as human telomerase inhibitors and luminescent probes for G-quadruplex DNA. J. Am. Chem. Soc. 2009, 131, 1835–1846.

38

Lu, L. H.; Chan, D. S.H.; Kwong, D. W. J.; He, H. Z.; Leung, C. H.; Ma, D. L. Detection of nicking endonuclease activity using a G-quadruplex-selective luminescent switch-on probe. Chem. Sci. 2014, 5, 4561–4568.

39

Wang, M. D.; Mao, Z. F.; Kang, T. S.; Wong, C. Y.; Mergny, J. L.; Leung, C. H.; Ma, D. L. Conjugating a groove- binding motif to an Ir(Ⅲ) complex for the enhancement of G-quadruplex probe behavior. Chem. Sci. 2016, 7, 2516–2523.

40

Berti, L.; Burley, G. A. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat. Nanotechnol. 2008, 3, 81–87.

41

Swasey, S. M.; Leal, L. E.; Lopez-Acevedo, O.; Pavlovich, J.; Gwinn, E. G. Silver (Ⅰ) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints. Sci. Rep. 2015, 5, 10163.

42

Fu, Y.; Zhang, J. L.; Chen, X. F.; Huang, T. T.; Duan, X. L.; Li, W.; Wang, J. K. Silver nanomaterials regulated by structural competition of G-/C-rich oligonucleotides. J. Phys. Chem. C 2011, 115, 10370–10379.

43

Lee, H. M.; Chan, D. S. H.; Yang, F.; Lam, H. Y.; Yan, S. C.; Che, C. M.; Ma, D. L.; Leung, C. H. Identification of natural product Fonsecin B as a stabilizing ligand of c-myc G-quadruplex DNA by high-throughput virtual screening. Chem. Commun. 2010, 46, 4680–4682.

44

Yang, X.; Gan, L. F.; Han, L.; Wang, E. K.; Wang, J. High-yield synthesis of silver nanoclusters protected by DNA monomers and DFT prediction of their photoluminescence properties. Angew. Chem., Int. Ed. 2013, 52, 2022–2026.

45

Hazel, P.; Huppert, J.; Balasubramanian, S.; Neidle, S. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 2004, 126, 16405–16415.

46

Bugaut, A.; Balasubramanian, S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 2008, 47, 689–697.

47

Smargiasso, N.; Rosu, F.; Hsia, W.; Colson, P.; Baker, E. S.; Bowers, M. T.; Pauw, E. D.; Gabelica, V. G-quadruplex DNA assemblies: Loop length, cation identity, and multimer formation. J. Am. Chem. Soc. 2008, 130, 10208–10216.

48

Guédin, A.; Gros, J.; Alberti, P.; Mergny, J. L. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids. Res. 2010, 38, 7858–7868.

49

Soto-Verdugo, V.; Metiu, H.; Gwinn, E. The properties of small Ag clusters bound to DNA bases. J. Chem. Phys. 2010, 132, 195102.

50

Lin, R. Y.; Tao, G. Y.; Chen, Y.; Chen, M. X.; Liu, F.; Li, N. Constructing a robust fluorescent DNA-stabilized silver nanocluster probe module by attaching a duplex moiety. Chem. —Eur. J. 2017, 23, 10893–10900.

51

Sharma, J.; Rocha, R. C.; Phipps, M. L.; Yeh, H. C.; Balatsky, K. A.; Vu, D. M.; Shreve, A. P.; Werner, J. H.; Martinez, J. S. A DNA-templated fluorescent silver nanocluster with enhanced stability. Nanoscale 2012, 4, 4107–4110.

52

Zeng, C. J.; Jin, R. C. Gold nanoclusters: Size-controlled synthesis and crystal structures. In Gold Clusters, Colloids and Nanoparticles I. Structure and Bonding; Mingos, D. M. P., Ed.; Springer: Cham, 2014; pp. 87–115.

DOI
53

Ramazanov, R. R.; Sych, T. S.; Reveguk, Z. V.; Maksimov, D. A.; Vdovichev, A. A.; Kononov, A. I. Ag-DNA emitter: Metal nanorod or supramolecular complex? J. Phys. Chem. Lett. 2016, 7, 3560–3566.

File
12274_2017_1844_MOESM1_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 July 2017
Revised: 04 September 2017
Accepted: 05 September 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21535006, 21475004, and 21275011).

Return