Journal Home > Volume 11 , Issue 4

Plasmonic metal–semiconductor nano-heterojunctions (NHJs), with their superior photocatalytic performance, provide opportunities for the efficient utilization of solar energy. However, scientific significance and technical challenges remain in the development of suitable metal–semiconductor NHJ photoelectrodes for new generation flexible optoelectronic devices, which often require complex processing. Herein, we report integrated three-dimensional (3D) NHJ photoelectrodes by conformally coating cadmium sulfide (CdS) nanolayers onto ultrathin nanoporous gold (NPG) films via a facile electrodeposition method. Localized surface plasmon resonance (LSPR) of NPG enhances the electron–hole pair generation and separation. Moreover, the direct contact interface and high conductive framework structure of the NHJs boosts the photogenerated carrier separation and transport. Hence, the NHJs exhibit evidently enhanced photocurrent density and hydrogen evolution rate relative to CdS deposited on either gold (Au) foil or fluorine-doped tin oxide (FTO) at 0 V vs. SCE (saturated calomel electrode) under visible-light irradiation. Moreover, they demonstrate a surprisingly stable photoelectrochemical hydrogen evolution (PEC-HE) activity over 104 s of continuous irradiation.

File
12274_2017_1821_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 July 2017
Revised: 21 August 2017
Accepted: 22 August 2017
Published: 19 March 2018
Issue date: April 2018

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51671145), the National Thousand Young Talents Program of China, the Tianjin Municipal Education Commission, the Tianjin Municipal Science and Technology Commission (No. 16JCYBJC17000) and the Fundamental Research Funds of Tianjin University of Technology. We would like to thank Dr. Anna Carlsson from FEI Company for her assistance with the atomic-resolution structure and EELS analyses, and Y. D. also acknowledges useful discussions and experimental assistance from Dr. Yajun Gao, Dr. Rongyue Wang, Dr. Chuancheng Jia, Xuanxuan Bi, and Junli Liu.

Return