Journal Home > Volume 11 , Issue 3

A single-atom catalyst (SAC) that was first proposed by us in 2011 has aroused significant recent interest. Among the various SACs, FeOx-based ones including Pt1/FeOx, Ir1/FeOx, Au1/FeOx, Ni1/FeOx, and Fe1/FeOx have been investigated either experimentally or theoretically for CO oxidation. However, a systematic study of FeOx-based SACs has not been conducted. For a comprehensive understanding of FeOx-supported single-metal-atom catalysts, extensive density functional theory calculations were carried out on the activities and catalytic mechanisms of SACs with the 3d, 4d, and 5d metals of group VIII to IB, i.e., M1/FeOx (M = Fe, Co, Ni, Cu; Ru, Rh, Pd, Ag; Os, Ir, Pt, Au) for CO oxidation. Remarkably, a new noble metal SAC, Pd1/FeOx, with high activity in CO oxidation was found and is predicted to be even better than the previously reported Pt1/FeOx and Ni1/FeOx. In comparison, other M1/FeOx SACs (M = Fe, Co, Cu; Ru, Rh, Ag; Os, Ir, Au) showed only low activities in CO oxidation. Moreover, the adsorption strength of CO on the single-atom active sites was found to be the key in determining the catalytic activity of these SACs for CO oxidation, because it governs the recoverability of oxygen vacancies on their surfaces in the formation of a second CO2 during CO oxidation. Our systematic studies of FeOx-supported SACs will help in understanding the fundamental mechanisms of the interactions between singly dispersed surface metal atoms and FeOx substrate and in designing highly active FeOx-supported SACs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A systematic theoretical study on FeOx-supported single-atom catalysts: M1/FeOx for CO oxidation

Show Author's information Jinxia Liang1,2,3Qi Yu2Xiaofeng Yang4( )Tao Zhang4Jun Li3( )
Guizhou Provincial Key Laboratory of Computational Nano-Material ScienceGuizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing TechnologyGuizhou Education UniversityGuiyang550018China
Shaanxi Key Laboratory of CatalysisShaanxi University of TechnologyHanzhong723000China
Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of EducationTsinghua UniversityBeijing100084China
State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China

Abstract

A single-atom catalyst (SAC) that was first proposed by us in 2011 has aroused significant recent interest. Among the various SACs, FeOx-based ones including Pt1/FeOx, Ir1/FeOx, Au1/FeOx, Ni1/FeOx, and Fe1/FeOx have been investigated either experimentally or theoretically for CO oxidation. However, a systematic study of FeOx-based SACs has not been conducted. For a comprehensive understanding of FeOx-supported single-metal-atom catalysts, extensive density functional theory calculations were carried out on the activities and catalytic mechanisms of SACs with the 3d, 4d, and 5d metals of group VIII to IB, i.e., M1/FeOx (M = Fe, Co, Ni, Cu; Ru, Rh, Pd, Ag; Os, Ir, Pt, Au) for CO oxidation. Remarkably, a new noble metal SAC, Pd1/FeOx, with high activity in CO oxidation was found and is predicted to be even better than the previously reported Pt1/FeOx and Ni1/FeOx. In comparison, other M1/FeOx SACs (M = Fe, Co, Cu; Ru, Rh, Ag; Os, Ir, Au) showed only low activities in CO oxidation. Moreover, the adsorption strength of CO on the single-atom active sites was found to be the key in determining the catalytic activity of these SACs for CO oxidation, because it governs the recoverability of oxygen vacancies on their surfaces in the formation of a second CO2 during CO oxidation. Our systematic studies of FeOx-supported SACs will help in understanding the fundamental mechanisms of the interactions between singly dispersed surface metal atoms and FeOx substrate and in designing highly active FeOx-supported SACs.

Keywords: density functional theory, single-atom catalyst, M1/FeOx, heterogeneous catalysis

References(87)

1

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

2

Gómez-Cortés, A.; Díaz, G.; Zanella, R.; Ramírez, H.; Santiago, P.; Saniger, J. M. Au−Ir/TiO2 Prepared by deposition precipitation with urea: Improved activity and stability in CO oxidation. J. Phys. Chem. C 2009, 113, 9710–9720.

3

Huang, Y. Q.; Wang, A. Q.; Li, L.; Wang, X. D.; Su, D. S.; Zhang, T. "Ir-in-ceria": A highly selective catalyst for preferential CO oxidation. J. Catal. 2008, 255, 144–152.

4

Wang, H. T.; Feng, Q.; Cheng, Y. C.; Yao, Y. B.; Wang, Q. X.; Li, K.; Schwingenschlögl, U.; Zhang, X. X.; Yang, W. Atomic bonding between metal and graphene. J. Phys. Chem. C 2013, 117, 4632–4638.

5

Wang, Y. G.; Yoon, Y.; Glezakou, V. A.; Li, J.; Rousseau, R. The role of reducible oxide–metal cluster charge transfer in catalytic processes: New insights on the catalytic mechanism of CO oxidation on Au/TiO2 from ab initio molecular dynamics. J. Am. Chem. Soc. 2013, 135, 10673–10683.

6

Xu, B. Q.; Wei, J. M.; Yu, Y. T.; Li, Y.; Li, J. L.; Zhu, Q. M. Size limit of support particles in an oxide-supported metal catalyst: Nanocomposite Ni/ZrO2 for utilization of natural gas. J. Phys. Chem. B 2003, 107, 5203–5207.

7

Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

8

Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.; Liu, J. Y.; Zhang, T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 2013, 135, 15314–15317.

9

Liang, J. X.; Wang, Y. G.; Yang, X. F.; Xing, D. H.; Wang, A. Q.; Zhang, T.; Li, J. Recent advances in single-atom catalysis. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Scott, R. A., Eds.; John Wiley & Sons, Inc. : London, 2017; pp 1–11.

10

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

11

Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 2014, 344, 616–619.

12

Lin, J.; Qiao, B. T.; Li, N.; Li, L.; Sun, X. C.; Liu, J. Y.; Wang, X. D.; Zhang, T. Little do more: A highly effective Pt1/FeOx single-atom catalyst for the reduction of NO by H2. Chem. Commun. 2015, 51, 7911–7914.

13

Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 2014, 7, 1364–1369.

14

Wang, Y.; Chen, Z.; Shen, R. A.; Cao, X.; Chen, Y. G.; Chen, C.; Wang, D. S.; Peng, Q.; Li, Y. D. Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Res. 2016, 9, 1209–1219.

15

Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F. Catalytically active single-atom sites fabricated from silver particles. Angew. Chem., Int. Ed. 2012, 124, 4274–4279.

16

Wang, L.; Zhang, S. R.; Zhu, Y.; Patlolla, A.; Shan, J. J.; Yoshida, H.; Takeda, S.; Frenkel, A. I.; Tao, F. Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2. ACS Catal. 2013, 3, 1011–1019.

17

Kwak, J. H.; Kovarik, L.; Szanyi, J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts. ACS Catal. 2013, 3, 2094–2100.

18

Chu, M. W.; Chen, C. H. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy. ACS Nano 2013, 7, 4700–4707.

19

Lin, S.; Ye, X. X.; Johnson, R. S.; Guo, H. First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: Stability and catalysis of CO oxidation. J. Phys. Chem. C 2013, 117, 17319–17326.

20

Sun, S. H.; Zhang, G. X.; Gauquelin, N.; Chen, N.; Zhou, J. G.; Yang, S. L.; Chen, W. F.; Meng, X. B.; Geng, D. S.; Banis, M. N. et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci. Rep. 2013, 3, 1775.

21

Moses-DeBusk, M.; Yoon, M.; Allard, L. F.; Mullins, D. R.; Wu, Z. L.; Yang, X. F.; Veith, G.; Stocks, G. M.; Narula, C. K. CO oxidation on supported single Pt atoms: Experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 2013, 135, 12634–12645.

22

Guo, Z.; Liu, B.; Zhang, Q. H.; Deng, W. P.; Wang, Y.; Yang, Y. H. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014, 43, 3480–3524.

23

Xing, J.; Chen, J. F.; Li, Y. H.; Yuan, W. T.; Zhou, Y.; Zheng, L. R.; Wang, H. F.; Hu, P.; Wang, Y.; Zhao, H. J. et al. Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chem. —Eur. J. 2014, 20, 2138–2144.

24

Flytzani-Stephanopoulos, M. Gold atoms stabilized on various supports catalyze the water–gas shift reaction. Acc. Chem. Res. 2014, 47, 783–792.

25

Long, B.; Tang, Y.; Li, J. New mechanistic pathways for CO oxidation catalyzed by single-atom catalysts: Supported and doped Au1/ThO2. Nano Res. 2016, 9, 3868–3880.

26

Liang, J. X.; Yang, X. F.; Xu, C. Q.; Zhang, T.; Li, J. On the catalytic activities of single-atom catalysts for CO oxidation: Pt1/FeOx vs. Fe1/FeOx. Chin. J. Catal., in press, DOI: 10.1016/S1872-2067(17)62879-1.

27

Nie, G. Y.; Li, P.; Liang, J. X.; Zhu, C. Theoretical investigation on the photocatalytic activity of the Au/g-C3N4 monolayer. J. Theor. Comput. Chem. 2017, 16, 1750013.

28

Liu, J. C.; Wang, Y. G.; Li, J. Toward rational design of oxide-supported single-atom catalysts: Atomic dispersion of gold on ceria. J. Am. Chem. Soc. 2017, 139, 6190–6199.

29

Tang, Y.; Zhao, S.; Long, B.; Liu, J. C.; Li, J. On the nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: Importance of quantum primogenic effect. J. Phys. Chem. C 2016, 120, 17514–17526.

30

Wang, Y. G.; Mei, D. H.; Glezakou, V. A.; Li, J.; Rousseau, R. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511.

31

Zhang, S. R.; Nguyen, L.; Liang, J. X.; Shan, J. J.; Liu, J. Y.; Frenkel, A. I.; Patlolla, A.; Huang, W. X.; Li, J.; Tao, F. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938.

32

Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo- single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

33

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

34

Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R. A.; Li, Y. D. Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.

35

Li, Z. Y.; Yuan, Z.; Li, X. N.; Zhao, Y. X.; He, S. G. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J. Am. Chem. Soc. 2014, 136, 14307–14313.

36

Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

37

Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 2017, 7, 1301–1307.

38

Zhang, T. A new photochemical synthesis strategy for monoatomic palladium catalyst. Acta Phys. Chim. Sin. 2016, 32, 1551–1552.

39

Guan, H. L.; Lin, J.; Qiao, B. T.; Miao, S.; Wang, A. Q.; Wang, X. D.; Zhang, T. Enhanced performance of Rh1/TiO2 catalyst without methanation in water-gas shift reaction. AlChE J. 2017, 63, 2081–2088.

40

Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.

41

Xu, G.; Wei, H. S.; Ren, Y. J.; Yin, J. Z.; Wang, A. Q.; Zhang, T. Chemoselective hydrogenation of 3-nitrostyrene over a Pt/FeOx pseudo-single-atom-catalyst in CO2-expanded liquids. Green Chem. 2016, 18, 1332–1338.

42

Wang, C. L.; Gu, X. K.; Yan, H.; Lin, Y.; Li, J. J.; Liu, D. D.; Li, W. X.; Lu, J. L. Water-mediated mars–van krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 2017, 7, 887–891.

43

Yang, T.; Fukuda, R.; Hosokawa, S.; Tanaka, T.; Sakaki, S.; Ehara, M. A Theoretical investigation on CO oxidation by single-atom catalysts M1/γ-Al2O3 (M = Pd, Fe, Co, and Ni). ChemCatChem 2017, 9, 1222–1229.

44

Liu, J. Y. Catalysis by supported single metal atoms. ACS Catal. 2017, 7, 34–59.

45

Tang, Y.; Wang, Y. G.; Liang, J. X.; Li, J. A DFT+U study of water adsorption and dissociation on Au1/CeO2 single-atom catalyst (SAC). Chin. J. Catal. 2017, 38, doi: 10.1016/S1872- 2067(17)62829-8.

46

Liu, Q. F.; Liu, Y.; Li, H. B.; Li, L. L.; Deng, D. H.; Yang, F.; Bao, X. H. Towards the atomic-scale characterization of isolated iron sites confined in a nitrogen-doped graphene matrix. Appl. Surf. Sci. 2017, 410, 111–116.

47

Cao, X. R. Insight into mechanism and selectivity of propane dehydrogenation over the Pd-doped Cu(111) surface. RSC Adv. 2016, 6, 65524–65532.

48

Li, C. Single Co atom catalyst stabilized in C/N containing matrix. Chin. J. Catal. 2016, 37, 1443–1445.

49

Zhang, H. B.; Wei, J.; Dong, J. C.; Liu, G. G.; Shi, L.; An, P. F.; Zhao, G. X.; Kong, J. T.; Wang, X. J.; Meng, X. G. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angew. Chem., Int. Ed. 2016, 128, 14522–14526.

50

Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani- Stephanopoulos, M.; Sykes, E. C. H. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209–1212.

51

Liu, J. L.; Lucci, F. R.; Yang, M.; Lee, S.; Marcinkowski, M. D.; Therrien, A. J.; Williams, C. T.; Sykes, E. C. H.; Flytzani-Stephanopoulos, M. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 2016, 138, 6396–6399.

52

Huang, X. H.; Xia, Y. J.; Cao, Y. J.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Ma, C.; Wang, H. W.; Li, J. J.; You, R. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 2017, 10, 1302–1312.

53

Wang, C. Y.; Garbarino, G.; Allard, L. F.; Wilson, F.; Busca, G.; Flytzani-Stephanopoulos, M. Low-temperature dehydrogenation of ethanol on atomically dispersed gold supported on ZnZrOx. ACS Catal. 2016, 6, 210–218.

54

Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

55

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single- atom electrocatalysts. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.201703864.

56

Liang, J. X.; Lin, J.; Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Liu, J. Y.; Zhang, T.; Li, J. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J. Phys. Chem. C 2014, 118, 21945–21951.

57

Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Xu, C. Q.; Li, J.; Zhang, T.; Liu, J. J. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 2015, 8, 2913–2924.

58

Qiao, B. T.; Liang, J. X.; Wang, A. Q.; Liu, J. Y.; Zhang, T. Single atom gold catalysts for low-temperature CO oxidation. Chin. J. Catal. 2016, 37, 1580–1586.

59

Liang, J. X.; Yang, X. F.; Wang, A. Q.; Zhang, T.; Li, J. Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for CO oxidation. Catal. Sci. Technol. 2016, 6, 6886–6892.

60

Li, F. Y.; Li, Y. F.; Zeng, X. C.; Chen, Z. F. Exploration of high-performance single-atom catalysts on support M1/FeOx for CO oxidation via computational study. ACS Catal. 2015, 5, 544–552.

61

Zhang, T. Theoretical design of oxide-supported single atom catalysts. Acta Phys. Chim. Sin. 2017, 33, 1–9.

62

Gardner, S. D.; Hoflund, G. B.; Upchurch, B. T.; Schryer, D. R.; Kielin, E. J.; Schryer, J. Comparison of the performance characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation. J. Catal. 1991, 129, 114–120.

63

Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.

64

Hu, L. H.; Sun, K. Q.; Peng, Q.; Xu, B. Q.; Li, Y. D. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363–368.

65

Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res. 2010, 3, 244–255.

66

Lin, J.; Wang, X. D.; Zhang, T. Recent progress in CO oxidation over Pt-group-metal catalysts at low temperatures. Chin. J. Catal. 2016, 37, 1805–1813.

67

Wang, Y. G.; Yang, X. F.; Li, J. Theoretical studies of CO oxidation with lattice oxygen on Co3O4 surfaces. Chin. J. Catal. 2016, 37, 193–198.

68

Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng, N. F. Interfacial activation of catalytically inert Au (6.7 nm)-Fe3O4 dumbbell nanoparticles for CO oxidation. Nano Res. 2009, 2, 975–983.

69

Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M. On the mechanism of low-temperature water gas shift reaction on copper. J. Am. Chem. Soc. 2008, 130, 1402–1414.

70

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

71

Song, C. S. Fuel processing for low-temperature and high- temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century. Catal. Today 2002, 77, 17–49.

72

Abbet, S.; Heiz, U.; Häkkinen, H.; Landman, U. CO oxidation on a single Pd atom supported on magnesia. Phys. Rev. Lett. 2001, 86, 5950–5953.

73

Okumura, M.; Masuyama, N.; Konishi, E.; Ichikawa, S.; Akita, T. CO oxidation below room temperature over Ir/TiO2 catalyst prepared by deposition precipitation method. J. Catal. 2002, 208, 485–489.

74

Wang, Y. G.; Mei, D. H.; Li, J.; Rousseau, R. A DFT+U study on the localized electronic states and their potential role during H2O dissociation and CO oxidation processes on CeO2(111) surface. J. Phys. Chem. C 2013, 117, 23082–23089.

75

Sandratskii, L. M.; Uhl, M.; Kübler, J. Band theory for electronic and magnetic properties of a-Fe2O3. J. Phys. Condens. Matter 1996, 8, 983–989.

76

Wang, X. G.; Weiss, W.; Shaikhutdinov, S. K.; Ritter, M.; Petersen, M.; Wagner, F.; Schlögl, R.; Scheffler, M. The hematite (α-Fe2O3) (0001) surface: Evidence for domains of distinct chemistry. Phys. Rev. Lett. 1998, 81, 1038–1041.

77

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

78

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

79

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

80

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 77, 3865–3868.

81

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Szotek, Z.; Temmerman, W. M.; Sutton, A. P. Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of UO2 and NiO. Phys. Stat. Sol. (A) 1998, 166, 429–443.

DOI
82

Henkelman, G.; Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.

83

Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295.

84

Hinshelwood, C. N. The Kinetics of Chemical Change; Clarendon: Oxford, UK, 1940.

85

Yoshioka, Y.; Schaefer Ⅲ, H. F.; Jordan, K. D. Theoretical investigation of the electron affinity of CO2. J. Chem. Phys. 1981, 75, 1040–1041.

86

Pan, Y. X.; Liu, C. J.; Wiltowski, T. S.; Ge, Q. F. CO2 adsorption and activation over γ-Al2O3-supported transition metal dimers: A density functional study. Catal. Today 2009, 147, 68–76.

87

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 2009, 21, 084204.

File
12274_2017_1775_MOESM1_ESM.pdf (652.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 July 2017
Revised: 22 July 2017
Accepted: 24 July 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We acknowledge simulating discussion with Professor Qingfeng Ge. This work was supported by the National Natural Science Foundation of China (Nos. 21590792, 91645203, and 21521091 to J. L.; 21503046 to J. X. L. and 21203182 to X. F. Y.), and National Basic Research Program of China (No. 2013CB834603 to J. L.), Natural Science Foundation of Guizhou Province of China (No. QKJ[2015]2122), Natural Science foundation of Department of Education of Guizhou Province (Nos. QJTD[2015]55 and ZDXK[2014]18) and the GZEU start up package. The calculations were done using supercomputers at Tsinghua National Laboratory for Information Science and Technology, the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University), and Guizhou Provincial High-Performance Computing Center of Condensed Materials and Molecular Simulation. This project is partially supported by the Open Fund of Shaanxi Key Laboratory of Catalysis to J. X. L. (No. SXKLC-2017-01).

Return