Journal Home > Volume 11 , Issue 3

The relatively small size of thin (one or few layers) graphene flakes makes it extremely difficult to study the behavior of suspended graphene by characterization techniques other than the electron microscopies. Herein, we exploited the capability of spatially resolved photoemission in combination with high resolution transmission electron microscopy to investigate the interaction of thermally evaporated Pt atoms on suspended and supported graphene. Spectroscopic and microscopic analyses reveal that the nucleation of nanometersized Pt particles in these two regions exhibit different trends. While only small nanometer-sized islands are present on the supported graphene, relatively larger clusters of islands were also found on the suspended flakes. The X-ray photoemission C 1s core levels acquired after the Pt deposition show an increase in the number of vacancies in the graphene sheets.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Size contrast of Pt nanoparticles formed on neighboring domains within suspended and supported graphene

Show Author's information Dario Roccella1Matteo Amati2Hikmet Sezen2,Rosaria Brescia3Luca Gregoratti2( )
Università degli Studi di Genova - Facoltà di Scienze MatematicheFisiche e Naturali, Viale Benedetto XV, Genova3-16132Italy
Elettra – Sincrotrone Trieste S.C.p.A. in Area Science ParkSS14-Km163.5Trieste34149Italy
Electron Microscopy FacilityIstituto Italiano di Tecnologia (IIT)via Morego 30Genova16163Italy

Present address: Helmholtz-Zentrum Berlin GmbH, Albert-Einstein-Str. 15, Berlin 12489, Germany

Abstract

The relatively small size of thin (one or few layers) graphene flakes makes it extremely difficult to study the behavior of suspended graphene by characterization techniques other than the electron microscopies. Herein, we exploited the capability of spatially resolved photoemission in combination with high resolution transmission electron microscopy to investigate the interaction of thermally evaporated Pt atoms on suspended and supported graphene. Spectroscopic and microscopic analyses reveal that the nucleation of nanometersized Pt particles in these two regions exhibit different trends. While only small nanometer-sized islands are present on the supported graphene, relatively larger clusters of islands were also found on the suspended flakes. The X-ray photoemission C 1s core levels acquired after the Pt deposition show an increase in the number of vacancies in the graphene sheets.

Keywords: nanoparticles, graphene, platinum, X-ray photoemission spectroscopy, scanning photoelectron microscopy, suspended films

References(36)

1

Dan, Y. P.; Lu, Y.; Kybert, N. J.; Luo, Z. T.; Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Lett. 2009, 9, 1472–1475.

2

He, Q. Y.; Sudibya, H. G.; Yin, Z. Y.; Wu, S. X.; Li, H.; Boey, F.; Huang, W.; Chen, P.; Zhang, H. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano. 2010, 4, 3201–3208.

3

Li, Y. X.; Wei, Z. D.; Zhao, Q. L.; Ding, W.; Zhang, Q.; Chen, S. G. Preparation of Pt/graphene catalyst and its catalytic performance for oxygen reduction. Acta Phys. Chim. Sin. 2011, 27, 858–862.

4

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.

5

Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.

6

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

7

Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 2010, 22, 1027–1036.

8

Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

9

Guo, S. J.; Dong, S. J.; Wang, E. K. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium- salt-based ionic liquid as a linker. Adv. Mater. 2010, 22, 1269–1272.

10

Kundu, P.; Nethravathi, C.; Deshpande, P. A.; Rajamathi, M.; Madras, G.; Ravishankar, N. Ultrafast microwave-assisted route to surfactant-free ultrafine Pt nanoparticles on graphene: Synergistic co-reduction mechanism and high catalytic activity. Chem. Mater. 2011, 23, 2772–2780.

11

Shen, Y.; Xiao, K. J.; Xi, J. Y.; Qiu, X. P. Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation. J. Power Sources 2015, 278, 235–244.

12

Antony, R. P.; Preethi, L. K.; Gupta, B.; Mathews, T.; Dash, S.; Tyagi, A. K. Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid. Mater. Res. Bull. 2015, 70, 60–67.

13

Grayfer, E. D.; Kibis, L. S.; Stadnichenko, A. I.; Vilkov, O. Y.; Boronin, A. I.; Slavinskaya, E. M.; Stonkus, O. A.; Fedorov, V. E. Ultradisperse Pt nanoparticles anchored on defect sites in oxygen-free few-layer graphene and their catalytic properties in CO oxidation. Carbon 2015, 89, 290–299.

14

Kim, K.; Lee, H. B. R.; Johnson, R. W.; Tanskanen, J. T.; Liu, N.; Kim, M. G.; Pang, C.; Ahn, C.; Bent, C. S.; Bao Z. N. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Comm. 2014, 5, 4781.

15

Gregoratti, L.; Barinov, A.; Benfatto, E.; Cautero, G.; Fava, C.; Lacovig, P.; Lonza, D.; Kiskinova, M.; Tommasini, R.; Mahl, S. et al. 48-Channel electron detector for photoemission spectroscopy and microscopy. Rev. Sci. Instrum. 2004, 75, 64–68.

16

Kolmakov, A.; Dikin, D. A.; Cote, L. J.; Huang, J. X.; Abyaneh, M. K.; Amati, M.; Gregoratti, L.; Günther, S.; Kiskinova, M. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nat. Nanotechnol. 2011, 6, 651–657.

17

Kraus, J.; Reichelt, R.; Günther, S.; Gregoratti, L.; Amati, M.; Kiskinova, M.; Yulaev, A.; Vlassiouk, I.; Kolmakov, A. Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. Nanoscale 2014, 6, 14394– 14403.

18

Scardamaglia, M.; Aleman, B.; Amati, M.; Ewels, C.; Pochet, P.; Reckinger, N.; Colomer, J. F.; Skaltsas, T.; Tagmatarchis, N.; Snyders, R. et al. Nitrogen implantation of suspended graphene flakes: Annealing effects and selectivity of sp2 nitrogen species. Carbon 2014, 73, 371–381.

19

Barinov, A.; Üstünel, H.; Fabris, S.; Gregoratti, L.; Aballe, L.; Dudin, P.; Baroni, S.; Kiskinova, M. Defect-controlled transport properties of metallic atoms along carbon nanotube surfaces. Phys. Rev. Lett. 2007, 99, 046803.

20

Barinov, A.; Malcioǧlu, O. B.; Fabris, S.; Sun, T.; Gregoratti, L.; Dalmiglio, M.; Kiskinova, M. Initial stages of oxidation on graphitic surfaces: Photoemission study and density functional theory calculations. J. Phys. Chem. C 2009, 113, 9009–9013.

21

Gan, Y. J.; Sun, L. T.; Banhart, F. One- and two-dimensional diffusion of metal atoms in graphene. Small 2008, 4, 587–591.

22

Morrow, B. H.; Striolo, A. Platinum nanoparticles on carbonaceous materials: The effect of support geometry on nanoparticle mobility, morphology, and melting. Nanotechnology 2008, 19, 195711.

23

Tang, Y. A.; Yang, Z. X.; Dai, X. Q. Trapping of metal atoms in the defects on graphene. J. Chem. Phys. 2011, 135, 224704.

24

Wang, H. T.; Feng, Q.; Cheng, Y. C.; Yao, Y. B.; Wang, Q. X.; Li, K.; Schwingenschlögl, U.; Zhang, X. X.; Yang, W. Atomic bonding between metal and graphene. J. Phys. Chem. C 2013, 117, 4632–4638.

25

Boukhvalov, D. W.; Katsnelson, M. I. Chemical functionalization of graphene with defects. Nano Lett. 2008, 8, 4373–4379.

26

Ramasse, Q. M.; Zan, R.; Bangert, U.; Boukhvalov, D. W.; Son, Y. W.; Novoselov, K. S. Direct experimental evidence of metal-mediated etching of suspended graphene. ACS Nano 2012, 6, 4063–4071.

27

Zan, R.; Bangert, U.; Ramasse, Q.; Novoselov, K. S. Interaction of metals with suspended graphene observed by transmission electron microscopy. J. Phys. Chem. Lett. 2012, 3, 953–958.

28

Okamoto, Y. Density-functional calculations of icosahedral M13 (M = Pt and Au) clusters on graphene sheets and flakes. Chem. Phys. Lett. 2006, 420, 382–386.

29

Krasheninnikov, A. V.; Lehtinen, P. O.; Foster, A. S.; Pyykkö, P.; Nieminen, R. M. Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys. Rev. Lett. 2009, 102, 126807.

30

Ramasse, Q. M.; Seabourne, C. R.; Kepaptsoglou, D. M.; Zan, R.; Bangert, U.; Scott, A. J. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 2013, 13, 4989–4995.

31

Wang, Z. G.; Niu, X. Y.; Su, Q. L.; Deng, H. Q.; Li, Z. J.; Hu, W. Y.; Gao, F. Transition metal adsorption promotes patterning and doping of graphene by electron irradiation. J. Phys. Chem. C 2013, 117, 17644–17649.

32

Bittencourt, C.; Hecq, M.; Felten, A.; Pireaux, J. J.; Ghijsen, J.; Felicissimo, M. P.; Rudolf, P.; Drube, W.; Ke, X.; Van Tendeloo, G. Platinum–carbon nanotube interaction. Chem. Phys. Lett. 2008, 462, 260–264.

33

Mason, M. G. Electronic structure of supported small metal clusters. Phys. Rev. B 1983, 27, 748–762.

34

Chi, D. H.; Cuong, N. T.; Kim, N. A.; Tuan, N. A.; Kim, Y. T.; Bao, H. T.; Mitani, T.; Ozaki, T.; Nagao, H. Electronic structures of Pt clusters adsorbed on (5, 5) single wall carbon nanotube. Chem. Phys. Lett. 2006, 432, 213–217.

35

Shavorskiy, A.; Eralp, T.; Gladys, M. J.; Held, G. A stable pure hydroxyl layer on Pt{110}-(1×2). J. Phys. Chem. C 2009, 113, 21755–21764.

36

Powell, C. J.; Jablonski, A. Surface sensitivity of X-ray photoelectron spectroscopy. Nucl. Instrum. Meth. Phys. Res. A 2009, 601, 54–65.

File
12274_2017_1774_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 April 2017
Revised: 29 June 2017
Accepted: 21 July 2017
Published: 02 February 2018
Issue date: March 2018

Copyright

© Tsinghua University Press and Springer‐Verlag GmbH Germany 2017

Acknowledgements

Acknowledgements

We would like to thank all the technical staff of Elettra for the support in the sample and experiment preparation.

Return