AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries

Yaping HouHongzhi MaoLiqiang Xu( )
Key Laboratory of Colloid & Interface Chemistry (Shandong University),Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University,Jinan,250100,China;
Show Author Information

Graphical Abstract

Abstract

MIL-100(V) is an inorganic-organic hybrid material composed of trimesic acid ligands and vanadium trimer supertetrahedra. MIL-100(V) is expected to be a good host for sulfur impregnation and an excellent sulfur cathode host for Li-S batteries, not only because of its unique mesoporous structure, but also owing to the presence of vanadium ions with various valence states, which can offer different Lewis acid sites and allow for strong interactions with sulfur and lithium polysulfides. In this study, mesoporous MIL-100(V) and MIL-100(V)/ reduced graphene oxide (rGO) composites have been applied as novel hosts for Li-S batteries for the first time. When tested as cathodes for Li-S batteries, both S@MIL-100(V) and S@MIL-100(V)/rGO exhibit excellent electrochemical performance. The S@MIL-100(V) cathode has been demonstrated to have a reversible capacity of ~550 mAh/g at 0.1 C (1 C = 1, 675 mAh/g) after 200 cycles with low capacity fading of 0.17% per cycle. Moreover, S@MIL-100(V)/rGO maintains a capacity of 650 mAh/g at 0.1 C after 75 cycles, whereas at 0.5 C, the capacity is maintained at 500 mAh/g after 200 cycles and 450 mAh/g after 300 cycles. The above results reveal that the use of MIL-100(V) and MIL-100(V)/rGO as hosts for Li-S batteries can effectively enhance the cycling stability and improve the electrochemical performance of Li-S batteries.

Electronic Supplementary Material

Download File(s)
nr-10-1-344_ESM.pdf (2 MB)

References

1

Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125-1134.

2

Huang, J. Q.; Zhang, Q.; Peng, H. J.; Liu, X. Y.; Qian W. Z.; Wei, F. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries. Energy Environ. Sci. 2014, 7, 347-353.

3

Liu, M. N.; Ye, F. M.; Li, W. F.; Li, H. F.; Zhang, Y. G. Chemical routes toward long-lasting lithium/sulfur cells. Nano Res. 2016, 9, 94-116.

4

Xu, J. T.; Shui, J. L.; Wang, J. L.; Wang, M.; Liu, H. K.; Dou, S. X.; Jeon, I. Y.; Seo, J. M.; Baek, J. B.; Dai, L. M. Sulfur-graphene nanostructured cathodes via ball-milling for high-performance lithium-sulfur batteries. ACS Nano 2014, 8, 10920-10930.

5

Fang, X.; Peng, H. S. A revolution in electrodes: Recent progress in rechargeable lithium-sulfur batteries. Small 2015, 11, 1488-1511.

6

Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186-13200.

7

Manthiram, A.; Fu, Y. Z.; Chung, S. -H.; Zu, C. X.; Su, Y. S. Rechargeable lithium−sulfur batteries. Chem. Rev. 2014, 114, 11751-11787.

8

Wang, J. G.; Xie, K. Y.; Wei, B. Q. Advanced engineering of nanostructured carbons for lithium-sulfur batteries. Nano Energy 2015, 15, 413-444.

9

Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries. Nano Res. 2015, 8, 2663-2675.

10

Ji, L. W.; Rao, M. M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. G. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells. Energy Environ. Sci. 2011, 4, 5053-5059.

11

Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38-46.

12

Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904-5908.

13

Qiu, Y. C.; Li, W. F.; Li, G. Z.; Hou, Y.; Zhou, L. S.; Li, H. F.; Liu, M. N.; Ye, F. M.; Yang, X. W.; Zhang, Y. G. Polyaniline-modified cetyltrimethylammonium bromide- graphene oxide-sulfur nanocomposites with enhanced performance for lithium-sulfur batteries. Nano Res. 2014, 7, 1355-1363.

14

Wang, J. K.; Yue, K. Q.; Zhu, X. D.; Wang, K. L.; Duan, L. F. C-S@PANI composite with a polymer spherical network structure for high performance lithium-sulfur batteries. Phys. Chem. Chem. Phys. 2016, 18, 261-266.

15

Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F.; Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.

16

Demir-Cakan, R.; Morcrette, M.; Nouar, F.; Davoisne, C.; Devic, T.; Gonbeau, D.; Dominko, R.; Serre, C.; Férey, G.; Tarascon, J. M.; Cathode composites for Li-S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 2011, 133, 16154-16160.

17

Wang, Z. Q.; Dou, Z. S.; Cui, Y. J.; Yang, Y.; Wang, Z. Y.; Qian, G. D. Sulfur encapsulated ZIF-8 as cathode material for lithium-sulfur battery with improved cyclability. Micropor. Mesopor. Mater. 2014, 185, 92-96.

18

Cabello, C. P.; Rumori, P.; Palomino, G. T. Carbon dioxide adsorption on MIL-100(M) (M = Cr, V, Sc) metal-organic frameworks: IR spectroscopic and thermodynamic studies. Micropor. Mesopor. Mater. 2014, 190, 234-239.

19

Wang, Z. Q.; Wang, B. X.; Yang, Y.; Cui, Y. J.; Wang, Z. Y.; Chen, B. L.; Qian, G. D. Mixed-metal−organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium−sulfur batteries. ACS Appl. Mater. Interfaces 2015, 7, 20999-21004.

20

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. The importance of chemical interactions between sulfur host materials and lithium polysulfides for advanced lithium-sulfur batteries. J. Electrochem. Soc. 2015, 162, A2567-A2576.

21

Zheng, J. M.; Tian, J.; Wu, D. X.; Gu, M.; Xu, W.; Wang, C. M.; Gao, F.; Engelhard, M. H.; Zhang, J. G.; Liu, J. et al. Lewis acid−base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 2014, 14, 2345-2352.

22

Vimont, A.; Goupil, J. M.; Lavalley, J. C.; Daturi, M.; Surblé, S.; Serre, C.; Millange, F.; Férey, G.; Audebrand, N. Investigation of acid sites in a zeotypic giant pores chromium(Ⅲ) carboxylate. J. Am. Chem. Soc. 2006, 128, 3218-3227.

23

van de Voorde, B.; Boulhout, M.; Vermoortele, F.; Horcajada, P.; Cunha, D.; Lee, J. S.; Chang, J. S.; Gibson, E.; Daturi, M.; Lavalley, J. C. et al. N/S-heterocyclic contaminant removal from fuels by the mesoporous metal−organic framework MIL-100: The role of the metal ion. J. Am. Chem. Soc. 2013, 135, 9849-9856.

24

Lieb, A.; Leclerc, H.; Devic, T.; Serre, C.; Margiolaki, I.; Mahjoubi, F.; Lee, J. S.; Vimont, A.; Daturi, M.; Chang, J. S. MIL-100(V)—A mesoporous vanadium metal organic framework with accessible metal sites. Micropor. Mesopor. Mater. 2012, 157, 18-23.

25

Yoon, J. W.; Seo, Y. K.; Hwang, Y. K.; Chang, J. S.; Leclerc, H.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E. et al. Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew. Chem., Int. Ed. 2010, 49, 5949-5952.

26

Tan, Y. L.; Zhu, K.; Li, D.; Bai, F.; Wei, Y. J.; Zhang, P. N-doped graphene/Fe-Fe3C nano-composite synthesized by a Fe-based metal organic framework and its anode performance in lithium ion batteries. Chem. Eng. J. 2014, 258, 93-100.

27

Liu, S. K.; Xie, K.; Chen, Z. X.; Li, Y. J.; Hong, X. B.; Xu, J.; Zhou, L. J.; Yuan, J. F.; Zheng, C. M. A 3D nanostructure of graphene interconnected with hollow carbon spheres for high performance lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 11395-11402.

28

Xie, J.; Yang, J.; Zhou, X. Y.; Zou, Y. L.; Tang, J. J.; Wang, S. C.; Chen, F. Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries. J. Power Sources 2014, 253, 55-63.

29

Hummers, W. S., Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

30

Ryu, H. S.; Park, J. W.; Park, J.; Ahn, J. P.; Kim, K. W.; Ahn, J. H.; Nam, T. H.; Wang, G. X.; Ahn, H. J. High capacity cathode materials for Li-S batteries. J. Mater. Chem. A 2013, 1, 1573-1578.

31

Fathy, M.; Gomaa, A.; Taher, F. A.; El-Fass, M. M.; Kashyout, A. E. -H. B. Optimizing the preparation parameters of GO and rGO for large-scale production. J. Mater. Sci. 2016, 51, 5664-5675.

32

Zhao, K. N.; Zhang, L.; Xia, R.; Dong, Y. F.; Xu, W. W.; Niu, C. J.; He, L.; Yan, M. Y.; Qu, L. B.; Mai, L. Q. SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 2016, 12, 588-594.

33

Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X. F.; Qiu, Y. C.; Yang, S. H. A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries. Nano Res. 2012, 5, 726-738.

34

Ma, L.; Zhuang, H. L.; Wei, S. Y.; Hendrickson, K. E.; Kim, M. S.; Cohn, G.; Hennig, R. G.; Archer, L. A. Enhanced Li−S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 2016, 10, 1050-1059.

Nano Research
Pages 344-353
Cite this article:
Hou Y, Mao H, Xu L. MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Research, 2017, 10(1): 344-353. https://doi.org/10.1007/s12274-016-1326-0

617

Views

87

Crossref

N/A

Web of Science

87

Scopus

7

CSCD

Altmetrics

Received: 16 July 2016
Revised: 11 September 2016
Accepted: 19 September 2016
Published: 28 October 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return