AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator

Xiaona Xia1Jie Chen1Hengyu Guo1Guanlin Liu1Dapeng Wei2Yi Xi1Xue Wang1( )Chenguo Hu1( )
Department of Applied Physics,Chongqing University,Chongqing,400044,China;
Chongqing Key Laboratory of Multi-scale Manufacturing Technology,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences,Chongqing,400714,China;
Show Author Information

Graphical Abstract

Abstract

Polydimethylsiloxane (PDMS) is an excellent material for investigating the mechanism of triboelectricity as it can easily be used to construct various microstructures. In this study, micro-capacitors (MCs) and variable micro- capacitors (VMCs) were embedded in PDMS by filling PDMS with silver nanoparticles (NPs) and constructing an internal cellular structure. The output performance of the triboelectric nanogenerators (TENGs) based on MCs@PDMS and VMCs@PDMS films was systematically investigated, with variation of the filling content of silver NPs and the pore ratio and size. The microstructure, permittivity, dielectric loss, and capacitance of the VMCs@PDMS films were well characterized. The output current of the TENG based on the VMCs@PDMS film was respectively 4.0 and 1.6 times higher than that of the TENGs based on the pure PDMS film and MCs@PDMS film, and the output power density of the former reached 6 W·m–2. This study sheds light on the physical nature of conductive nanoparticle fillings and cellular structures in dielectric triboelectric polymers.

Electronic Supplementary Material

Download File(s)
nr-10-1-320_ESM.pdf (2.4 MB)

References

1

Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectric- effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

2

Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C. Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

3

Zhu, G.; Lin, Z. H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

4

Tang, W.; Han, C. B.; Zhang, C.; Wang, Z. L. Cover-sheet- based nanogenerator for charging mobile electronics using low-frequency body motion/vibration. Nano Energy 2014, 9, 121–127.

5

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

6

Zhu, G.; Wang, A. C.; Liu, Y.; Zhou, Y. S.; Wang, Z. L. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 2012, 12, 3086–3090.

7

Chen, S. W.; Gao, C. Z.; Tang, W.; Zhu, H. R.; Han, Y.; Jiang, Q. W.; Li, T.; Cao, X.; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 2015, 14, 217–225.

8

Bae, J.; Lee, J.; Kim, S.; Ha, J.; Lee, B. S.; Park, Y.; Choong, C.; Kim, J. B.; Wang, Z. L.; Kim, H. Y. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 2014, 5, 4929.

9

Wen, Z.; Chen, J.; Yeh, M. H.; Guo, H. Y.; Li, Z. L.; Fan, X.; Zhang, T. J.; Zhu, L. P.; Wang, Z. L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 2015, 16, 38–46.

10

Zhang, L.; Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Tang, J. F.; Zhang, H. T.; Pan, H.; Zhu, M. H.; Yang, W. Q. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650–1656.

11

Wang, X. F.; Niu, S. M.; Yin, Y. J.; Yi, F.; You, Z.; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.

12

Jiang, T.; Zhang, L. M.; Chen, X. Y.; Han, C. B.; Tang, W.; Zhang, C.; Xu, L.; Wang, Z. L. Structural optimization of triboelectric nanogenerator for harvesting water wave energy. ACS Nano 2015, 9, 12562–12572.

13

Choi, D.; Lee, S.; Park, S. M.; Cho, H.; Hwang, W.; Kim, D. S. Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Res. 2015, 8, 2481–2491.

14

Lin, Z. H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact- electrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696.

15

Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.

16

Su, Y. J.; Wen, X. N.; Zhu, G.; Yang, J.; Chen, J.; Bai, P.; Wu, Z. M.; Jiang, Y. D.; Wang, Z. L. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014, 9, 186–195.

17

Yang, J.; Chen, J.; Liu, Y.; Yang, W. Q.; Su, Y. J.; Wang, Z. L. Triboelectrification-based organic film nanogenerator for acoustic energy harvesting and self-powered active acoustic sensing. ACS Nano 2014, 8, 2649–2657.

18

Yu, A. F.; Song, M.; Zhang, Y.; Zhang, Y.; Chen, L. B.; Zhai, J. Y.; Wang, Z. L. Self-powered acoustic source locator in underwater environment based on organic film triboelectric nanogenerator. Nano Res. 2015, 8, 765–773.

19

Zhao, T.; Zhang, C.; Han, C. B.; Fan, F. R.; Tang, W.; Wang, Z. L. Woven structured triboelectric nanogenerator for wearable devices. ACS Appl. Mater. Interfaces 2014, 6, 14695−14701.

20

Zhong, Q. Z.; Zhong, J. W.; Cheng, X. F.; Yao, X.; Wang, B.; Li, W. B.; Wu, N.; Liu, K.; Hu, B.; Zhou, J. Paper-based active tactile sensor array. Adv. Mater. 2015, 27, 7130−7136.

21

Wu, Y. C.; Zhong, X. D.; Wang, X.; Yang, Y.; Wang, Z. L. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 2014, 7, 1631–1639.

22

Xia, X. N.; Liu, G. L.; Guo, H. Y.; Leng, Q.; Hu, C. G.; Xi, Y. Honeycomb-like three electrodes based triboelectric generator for harvesting energy in full space and as a self- powered vibration alertor. Nano Energy 2015, 15, 766–775.

23

Xia, X. N.; Liu, G. L.; Chen, L.; Li, W. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Foldable and portable triboelectric-electromagnetic generator for scavenging motion energy and as a sensitive gas flow sensor for detecting breath personality. Nanotechnology 2015, 26, 475402.

24

Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

25

Cheng, G.; Lin, Z. H.; Du, Z. L.; Wang, Z. L. Simultaneously harvesting electrostatic and mechanical energies from flowing water by a hybridized triboelectric nanogenerator. ACS Nano 2014, 8, 1932–1939.

26

Wang, B.; Zhong, J. W.; Zhong, Q. Z.; Wu, N.; Cheng, X. F.; Li, W. B.; Liu, K.; Hu, B.; Zhou, J. Sandwiched composite fluorocarbon film for flexible electret generator. Adv. Electron. Mater. 2016, 2, 1500408.

27

Wu, N.; Cheng, X. F.; Zhong, Q. Z.; Zhong, J. W.; Li, W. B.; Wang, B.; Hu, B.; Zhou, J. Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring. Adv. Funct. Mater. 2015, 25, 4788–4794.

28

Chen, J.; Guo, H. Y.; He, X. M.; Liu, G. L.; Xi, Y.; Shi, H. F.; Hu, C. G. Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interfaces 2016, 8, 736–744.

29

He, X. M.; Guo, H. Y.; Yue, X. L.; Gao, J.; Xi, Y.; Hu, C. G. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale 2015, 7, 1896–1903.

30

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.

31

Lee, K. Y.; Chun, J.; Lee, J. -H.; Kim, K. N.; Kang, N. -R.; Kim, J. -Y.; Kim, M. H.; Shin, K. -S; Gupta, M. K.; Baik, J. M. et al. Hydrophobic sponge structure-based triboelectric nanogenerator. Adv. Mater. 2014, 26, 5037–5042.

32

Kim, D.; Park, S. J.; Jeon, S. B.; Seol, M. L.; Chhoi, Y. K. A triboelectric sponge fabricated from a cube sugar template by 3D soft lithography for superhydrophobicity and elasticity. Adv. Electron. Mater. 2016, 2, 1500331.

33

Jeong, C. K.; Baek, K. M.; Niu, S. M.; Nam, T. W.; Hur, Y. H.; Park, D. Y.; Hwang, G. -T; Byun, M.; Wang, Z. L.; Jung, Y. S. et al. Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 2014, 14, 7031–7038.

34

Chun, J. S.; Kim, J. W.; Jung, W. S.; Kang, C. Y.; Kim, S. W.; Wang, Z. L.; Baik, J. M. Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments. Energy Environ. Sci. 2015, 8, 3006–3012.

35

Li, W. B.; Wu, N.; Zhong, J. W.; Zhong, Q. Z.; Zhao, S.; Wang, B.; Cheng, X. F.; Li, S. L.; Liu, K.; Hu, B. et al. Theoretical study of cellular piezoelectret generators. Adv. Funct. Mater. 2016, 26, 1964–1974.

36

Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.

37

Ko, Y. H.; Nagaraju, G. L.; Lee, S. H.; Yu, J. S. PDMS- based triboelectric and transparent nanogenerators with ZnO nanorod arrays. ACS Appl. Mater. Interfaces 2014, 6, 6631–6637.

38

Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T. C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

Nano Research
Pages 320-330
Cite this article:
Xia X, Chen J, Guo H, et al. Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Research, 2017, 10(1): 320-330. https://doi.org/10.1007/s12274-016-1294-4

856

Views

117

Crossref

N/A

Web of Science

119

Scopus

6

CSCD

Altmetrics

Received: 02 August 2016
Revised: 13 September 2016
Accepted: 19 September 2016
Published: 07 November 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return