AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-supported Ni6MnO8 3D mesoporous nanosheet arrays with ultrahigh lithium storage properties and conversion mechanism by in-situ XAFS

Dongdong Zhao1,§Peng Yu1,§Lei Wang1( )Fanfei Sun2Li Zhao1Chungui Tian1Wei Zhou1Honggang Fu1( )
Key Laboratory of Functional Inorganic Material Chemistry,Ministry of Education of the People's Republic of China, Heilongjiang University,Harbin,150080,China;
Shanghai Synchrotron Radiation Facility (SSRF),Shanghai Institute of Applied Physics, Chinese Academy of Sciences,Shanghai,201204,China;

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Murdochite-type Ni6MnO8 three-dimensional mesoporous nanosheet arrays grown on carbon cloth (NMO-SA/CC) are synthesized using an in-situ growth strategy. As self-supported binder-free anodes for LIBs, the NMO-SA/CC hierarchical nanostructures exhibit ultrahigh capacity, excellent cycling stability, and good rate capability. The excellent lithium storage performance can be ascribed to the perfect electrical contact between NMO-SA and CC. The mesopores in the thin nanosheet can maximize the electrode contact with the electrolyte by decreasing the Li+ diffusion path. Moreover, these effects relieve the pulverization and agglomeration that originate from the large volume variations during the Li+ intercalation/deintercalation cycles. The in-situ X-ray absorption fine structure (XAFS) spectrum recorded during the initial lithiation/delithiation processes reveals the conversion reaction process.

Electronic Supplementary Material

Download File(s)
nr-10-1-263_ESM.pdf (3.9 MB)

References

1

Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660-12668.

2

Xia, Y. S.; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z. Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 2011, 6, 580-587.

3

Zhao, S. L.; Yin, H. J.; Du, L.; Yin, G. P.; Tang, Z. Y.; Liu, S. Q. Three dimensional N-doped graphene/PtRu nanoparticle hybrids as high performance anode for direct methanol fuel cells. J. Mater. Chem. A 2014, 2, 3719-3724.

4

Zhao, S. L.; Li, Y. C.; Yin, H. J.; Liu, Z. Z.; Luan, E. X.; Zhao, F.; Tang, Z. Y.; Liu, S. Q. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells. Sci. Adv. 2015, 1, e1500372.

5

Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763-4782.

6

Dunn, B.; Kamath, H.; Tarascon, J. -M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.

7

Zhao, D. D.; Wang, L.; Yu, P.; Zhao, L.; Tian, C. G.; Zhou, W.; Zhang, L.; Fu, H. G. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Res. 2015, 8, 2998-3010.

8
Liu, J.; Banis, M. N.; Sun, Q.; Lushington, A.; Li, R. Y.; Sham, T. -K.; Sun, X. L. Rational design of atomic-layer- deposited LiFePO4 as a high-performance cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 6472-6477.https://doi.org/10.1002/adma.201401805
9

Scott, I. D.; Jung, Y. S.; Cavanagh, A. S.; Yan, Y. F.; Dillon, A. C.; George, S. M.; Lee, S. -H. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 2011, 11, 414-418.

10

Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733-737.

11

Yin, H. J.; Zhao, S. L.; Wan, J. W.; Tang, H. J.; Chang L.; He, L. C.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Three- dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater. 2013, 25, 6270-6276.

12

Nguyen, H. T.; Yao, F.; Zamfir, M. R.; Biswas, C.; So, K. P.; Lee, Y. H.; Kim, S. M.; Cha, S. N.; Kim, J. M.; Pribat, D. Highly interconnected Si nanowires for improved stability Li-ion battery anodes. Adv. Energy Mater. 2011, 1, 1154-1161.

13

Lee, C. W.; Seo, S. -D.; Kim, D. W.; Park, S.; Jin, K.; Kim, D. -W.; Hong, K. S. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 2013, 6, 348-355.

14

Yin, Z. G.; Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M. H. MoV2O8 nanostructures: Controlled synthesis and lithium storage mechanism. Nanoscale 2016, 8, 508-516.

15

Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.

16

Shen, L. F.; Yu, L.; Yu, X. -Y.; Zhang, X. G.; Lou, X. W. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868-1872.

17

Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanostructured metal oxide-based materials as advanced anodes for lithium- ion batteries. Nanoscale 2012, 4, 2526-2542.

18

Kong, D. Z.; Luo, J. S.; Wang, Y. L.; Ren W. N.; Yu, T.; Luo, Y. S.; Yang, Y. P.; Cheng, C. W. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815-3826.

19

Yin, L. W.; Zhang, Z. W.; Li, Z. Q.; Hao, F. B.; Li, Q.; Wang, C. X.; Fan, R. H.; Qi, Y. X. Spinel ZnMn2O4 nanocrystal-anchored 3D hierarchical carbon aerogel hybrids as anode materials for lithium ion batteries. Adv. Funct. Mater. 2014, 24, 4176-4185.

20

Wang, Z. Y.; Zhou, L.; Lou X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903-1911.

21

Zhang, G. Q.; Lou, X. W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 2013, 25, 976-979.

22

Sun, H. T.; Xin, G. Q.; Hu, T.; Yu, M. P.; Shao, D. L.; Sun, X.; Lian, J. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat. Commun. 2014, 5, 4526.

23

Zhang, G.; Liu, H. J.; Qu, J. H.; Li, J. H. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190-1209.

24

Wang, H.; Feng, H. B.; Li, J. H. Graphene and graphene- like layered transition metal dichalcogenides in energy conversion and storage. Small 2014, 10, 2165-2181.

25

Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400-2405.

26

Yuan, C. Z.; Yang, L.; Hou, L. R.; Shen, L. F.; Zhang, X. G.; Lou, X. W. Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ. Sci. 2012, 5, 7883-7887.

27

Ji, J. Y.; Li, Y.; Peng, W. C.; Zhang, G. L.; Zhang, F. B.; Fan, X. B. Advanced graphene-based binder-free electrodes for high-performance energy storage. Adv. Mater. 2015, 27, 5264-5279.

28

Wei, W.; Wang, Z. H.; Liu, Z.; Liu, Y.; He, L.; Chen, D. Z.; Umar, A.; Guo, L.; Li, J. H. Metal oxide hollow nanostructures: Fabrication and Li storage performance. J. Power Sources, 2013, 238, 376-387.

29

Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 2015, 137, 5590-5595.

30

Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488-1504.

31

Liu, B.; Zhang J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005-3011.

32

Kim, S. W.; Lee, H. W.; Muralidharan, P.; Seo, D. -H.; Yoon, W. -S.; Kim, D. K.; Kang, K. Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res. 2011, 4, 505-510.

33

Jiang, H.; Hu, Y. J.; Guo, S. J.; Yan, C. Y.; Lee, P. S.; Li, C. Z. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038-6046.

34

Kang, W. P.; Tang, Y. B.; Li, W. Y.; Yang, X.; Xue, H. T.; Yang, Q. D.; Lee, C. -S. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode. Nanoscale 2015, 7, 225-231.

35

Taguchi, H.; Tahara, S.; Okumura, M.; Hirota, K. Synthesis of murdochite-type Ni6MnO8 with variable specific surface areas and the application in methane oxidation. J. Solid State Chem. 2014, 215, 300-304.

36

Feltz, A.; Töpfer, J. Investigations on electronically conducting oxide systems XXVI. Preparation and properties of Ni6MnO8 and NiMnO3-δ (δ≈0.02). J. Alloys Compds. 1993, 196, 75-79.

37

Liu, J. L.; Wang, J.; Ku, Z. L.; Wang, H. H.; Chen, S.; Zhang, L. L.; Lin, J. Y.; Shen, Z. X. Aqueous rechargeable alkaline CoxNi2-xS2 /TiO2 battery. ACS Nano 2016, 10, 1007-1016.

38

Zhang, G. Q.; Yu, L.; Wu, H. B.; Hoster, H. E.; Lou, X. W. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609-4613.

39

Zhou, W.; Lin, L. J; Wang, W. J.; Zhang, L. L.; Wu, Q.; Li, J. H.; Guo, L. Hierarchial mesoporous hematite with "electron-transport channels" and its improved performances in photocatalysis and lithium ion batteries. J. Phys. Chem. C 2011, 115, 7126-7133.

40

McSweeney, W.; Geaney, H.; O'Dwyer, C. Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes. Nano Res. 2015, 8, 1395-1442.

41

Luo, J. S.; Xia, X. H.; Luo, Y. S.; Guan, C.; Liu, J. L.; Qi, X. Y.; Ng, C. F.; Yu, T.; Zhang, H.; Fan, H. J. Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 2013, 3, 737-743.

42

Wu, H.; Yu, G. H.; Pan, L. J.; Liu, N. A.; McDowell, M. T.; Bao, Z. A.; Cui, Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013, 4, 1943.

43

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

44

Fan, Z. Y.; Wang, B. R.; Xi, Y. X.; Xu, X.; Li, M. Y.; Li, J.; Coxon, P.; Cheng, D. D.; Gao, G. X.; Xiao, C. H. et al. A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon 2016, 99, 633-641.

45

Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745-748.

46

Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. New NixMg6−xMnO8 mixed oxides as active materials for the negative electrode of lithium-ion cells. J Solid State Chem. 2002, 166, 330-335.

47

Latorre-Sanchez, M.; Atienzar, P.; Abellán, G.; Puche, M.; Fornés, V.; Ribera, A.; García, H. The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon 2012, 50, 518-525.

48

Su, H.; Xu, Y. -F.; Feng, S. -C.; Wu, Z. -G.; Sun, X. -P.; Shen, C. -H.; Wang, J. Q.; Li, J. -T.; Huang, L.; Sun, S. -G. Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES. ACS Appl. Mater. Interfaces 2015, 7, 8488-8494.

49

Rana, J.; Glatthaar, S.; Gesswein, H.; Sharma, N.; Binder, J. R.; Chernikov, R.; Schumacher, G.; Banhart, J. Local structural changes in LiMn1.5Ni0.5O4 spinel cathode material for lithium-ion batteries. J. Power Sources 2014, 255, 439-449.

Nano Research
Pages 263-275
Cite this article:
Zhao D, Yu P, Wang L, et al. Self-supported Ni6MnO8 3D mesoporous nanosheet arrays with ultrahigh lithium storage properties and conversion mechanism by in-situ XAFS. Nano Research, 2017, 10(1): 263-275. https://doi.org/10.1007/s12274-016-1285-5

749

Views

25

Crossref

N/A

Web of Science

26

Scopus

0

CSCD

Altmetrics

Received: 13 July 2016
Revised: 30 August 2016
Accepted: 07 September 2016
Published: 05 November 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return