Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Thermal transport in superlattices is governed by various phonon-scattering processes. For extracting the phonon-scattering contribution of hetero-interfaces in chalcogenide superlattices, single-crystalline Bi2Se3/In2Se3 (BS/IS) superlattices with minimized defects are prepared on fluorophlogopite mica by molecular beam epitaxy. The cross-plane heat-conducting properties of the BS/IS superlattices are demonstrated to depend precisely on the period thicknesses and constituents of the superlattices, where a minimum in the thermal conductivity indicates a crossover from particle-like to wave-like phonon transport in the superlattices. The thermal-conductivity minimum of the BS/IS superlattices is nearly one order of magnitude lower than that of intrinsic BS film.
Hicks, L. D.; Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993, 47, 12727-12731.
Hicks, L. D.; Harman, T. C.; Sun, X.; Dresselhaus, M. S. Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1996, 53, R10493-R10496.
Vashaee, D.; Shakouri, A. Improved thermoelectric power factor in metal-based superlattices. Phys. Rev. Lett. 2004, 92, 106103.
Ravichandran, J.; Yadav, A. K.; Cheaito, R.; Rossen, P. B.; Soukiassian, A.; Suresha, S. J.; Duda, J. C.; Foley, B. M.; Lee, C. H.; Zhu, Y. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 2014, 13, 168-172.
Simkin, M. V.; Mahan, G. D. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 2000, 84, 927-930.
Koh, Y. K.; Cao, Y.; Cahill, D. G.; Jena, D. Heat-transport mechanisms in superlattices. Adv. Funct. Mater. 2009, 19, 610-615.
Ferrando-Villalba, P.; Lopeandía, A. F.; Alvarez, F. X.; Paul, B.; de Tomás, C.; Alonso, M. I.; Garriga, M.; Goñi, A. R.; Santiso, J.; Garcia, G. et al. Tailoring thermal conductivity by engineering compositional gradients in Si1−xGex superlattices. Nano Res. 2015, 8, 2833-2841.
Saha, B.; Koh, Y. R.; Comparan, J.; Sadasivam, S.; Schroeder, J. L.; Garbrecht, M.; Mohammed, A.; Birch, J.; Fisher, T.; Shakouri, A. et al. Cross-plane thermal conductivity of (Ti, W)N/(Al, Sc)N metal/semiconductor superlattices. Phys. Rev. B 2016, 93, 045311.
Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'Quinn, B. Thin-film thermoelectric devices with high room- temperature figures of merit. Nature 2001, 413, 597-602.
Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X.; Wang, D. Z.; Muto, A.; Vashaee, D. et al. High- thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 2008, 320, 634-638.
Snyder, G. J.; Lim, J. R.; Huang, C. K.; Fleurial, J. P. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2003, 2, 528-531.
Chowdhury, I.; Prasher, R.; Lofgreen, K.; Chrysler, G.; Narasimhan, S.; Mahajan, R.; Koester, D.; Alley, R.; Venkatasubramanian, R. On-chip cooling by superlattice- based thin-film thermoelectrics. Nat. Nanotechnol. 2009, 4, 235-238.
Zhang, H. J.; Liu, C. -X.; Qi, X. -L.; Dai, X.; Fang, Z.; Zhang, S. -C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.
Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398-402.
Wang, J.; Li, H. D.; Chang, C. Z.; He, K.; Lee, J. S.; Lu, H. Z.; Sun, Y.; Ma, X. C.; Samarth, N.; Shen, S. Q. et al. Anomalous anisotropic magnetoresistance in topological insulator films. Nano Res. 2012, 5, 739-746.
Ghaemi, P.; Mong, R. S. K.; Moore, J. E. In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi2Te3 and Bi2Se3. Phys. Rev. Lett. 2010, 105, 166603.
Kim, D.; Syers, P.; Butch, N. P.; Paglione, J.; Fuhrer, M. S. Ambipolar surface state thermoelectric power of topological insulator Bi2Se3. Nano Lett. 2014, 14, 1701-1706.
Osterhage, H.; Gooth, J.; Hamdou, B.; Gwozdz, P.; Zierold, R.; Nielsch, K. Thermoelectric properties of topological insulator Bi2Te3, Sb2Te3, and Bi2Se3 thin film quantum wells. Appl. Phys. Lett. 2014, 105, 123117.
Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 2000, 61, 3091-3097.
Maldovan, M. Phonon wave interference and thermal bandgap materials. Nat. Mater. 2015, 14, 667-674.
Touzelbaev, M. N.; Zhou, P.; Venkatasubramanian, R.; Goodson, K. E. Thermal characterization of Bi2Te3/Sb2Te3 superlattices. J. Appl. Phys. 2001, 90, 763-767.
Li, H. D.; Wang, Z. Y.; Kan, X.; Guo, X.; He, H. T.; Wang, Z.; Wang, J. N.; Wong, T. L.; Wang, N.; Xie, M. H. The van der Waals epitaxy of Bi2Se3 on the vicinal Si(111) surface: An approach for preparing high-quality thin films of a topological insulator. New J. Phys. 2010, 12, 103038.
Rathi, S. J.; Smith, D. J.; Drucker, J. Optimization of In2Se3/Si(111) heteroepitaxy to enable Bi2Se3/In2Se3 bilayer growth. Cryst. Growth Des. 2014, 14, 4617-4623.
Guo, Y. F.; Aisijiang, M.; Zhang, K.; Jiang, W.; Chen, Y. L.; Zheng, W. S.; Song, Z. H.; Cao, J.; Liu, Z. F.; Peng, H. L. Selective-area van der Waals epitaxy of topological insulator grid nanostructures for broadband transparent flexible electrodes. Adv. Mater. 2013, 25, 5959-5964.
Lin, Z. Y.; Chen, Y.; Yin, A. X.; He, Q. Y.; Huang, X. Q.; Xu, Y. X.; Liu, Y.; Zhong, X.; Huang, Y.; Duan, X. F. Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. Nano Lett. 2014, 14, 6547-6553.
Liu, X. L.; Fang, Z. C.; Zhang, Q.; Huang, R. J.; Lin, L.; Ye, C. M.; Ma, C.; Zeng, J. Ethylenediaminetetraacetic acid-assisted synthesis of Bi2Se3 nanostructures with unique edge sites. Nano Res. 2016, 9, 2707-2714.
Wang, Z. Y.; Guo, X.; Li, H. D.; Wong, T. L.; Wang, N.; Xie, M. H. Superlattices of Bi2Se3/In2Se3: Growth characteristics and structural properties. Appl. Phys. Lett. 2011, 99, 023112.
Zhao, Y. F.; Liu, H. W.; Guo, X.; Jiang, Y.; Sun, Y.; Wang, H. C.; Wang, Y.; Li, H. D.; Xie, M. H.; Xie, X. C. et al. Crossover from 3D to 2D quantum transport in Bi2Se3/ In2Se3 superlattices. Nano Lett. 2014, 14, 5244-5249.
George, S. D.; Augustine, S.; Mathai, E.; Radhakrishnan, P.; Nampoori, V. P. N.; Vallabhan, C. P. G. Effect of Te doping on thermal diffusivity of Bi2Se3 crystals: A study using open cell photoacoustic technique. Phys. Stat. Sol. A 2003, 196, 384-389.
Yao, T. Thermal properties of AlAs/GaAs superlattices. Appl. Phys. Lett. 1987, 51, 1798-1800.
Li, H. D.; Ren, W. Y.; Wang, G. Y.; Gao, L.; Peng, R. M.; Li, H.; Zhang, P. Y.; Shafa, M.; Tong, X.; Luo, S. Y. et al. Monolithic integration of metastable α-In2Se3 thin film on H-passivated Si(111) for photovoltaic applications. J. Phys. D: Appl. Phys. 2016, 49, 145108.