AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance

Keren Dai1Xiaofeng Wang1( )Simiao Niu2( )Fang Yi3Yajiang Yin1Long Chen4Yue Zhang3Zheng You1( )
Collaborative Innovation Center for Micro/Nano Fabrication,Device and System, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University,Beijing,100084,China;
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA30332-0245, USA
State Key Laboratory for Advanced Metals and Materials,School of Materials Science and Engineering, Beijing Municipal Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing,Beijing,100083,China;
Broadcom Ltd., 2901 Via Fortuna #400, Austin, TX, 78746, USA
Show Author Information

Graphical Abstract

Abstract

Parasitic capacitance is an unavoidable and usually unwanted capacitance that exists in electric circuits, and it is the most important second-order non-ideal effect that must be considered while designing a triboelectric nanogenerator (TENG) because its magnitude is comparable to the magnitude of the TENG capacitance. This paper investigates the structure and performance optimization of TENGs through modeling and simulation, taking the parasitic capacitance into account. Parasitic capacitance is generally found to cause severe performance degradation in TENGs, and its effects on the optimum matching resistance, maximum output power, and structural figures-of-merit (FOMs) of TENGs are thoroughly investigated and discussed. Optimum values of important structural parameters such as the gap and electrode length are determined for the different working modes of TENGs, systematically demonstrating how these optimum structural parameters change as functions of the parasitic capacitance. Additionally, it is demonstrated that the parasitic capacitance can improve the height tolerance of the metal freestanding-mode TENGs. This work provides a theoretical foundation for the structure and performance optimization of TENGs for practical applications and promotes the development of mechanical energy-harvesting techniques.

Electronic Supplementary Material

Download File(s)
nr-10-1-157_ESM.pdf (3.3 MB)

References

1

Hu, Y. F.; Wang, Z. L. Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy 2015, 14, 3–14.

2

Falconi, C.; Mantini, G.; D'Amico, A.; Wang, Z. L. Studying piezoelectric nanowires and nanowalls for energy harvesting. Sensors Actuat. B: Chem. 2009, 139, 511–519.

3

Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

4

Yi, F.; Lin, L.; Niu, S. M.; Yang, J.; Wu, W. Z.; Wang, S. H.; Liao, Q. L.; Zhang, Y.; Wang, Z. L. Self-powered trajectory, velocity, and acceleration tracking of a moving object/body using a triboelectric sensor. Adv. Funct. Mater. 2014, 24, 7488–7494.

5

Yi, F.; Lin, L.; Niu, S. M.; Yang, P. K.; Wang, Z. N.; Chen, J.; Zhou, Y. S.; Zi, Y. L.; Wang, J.; Liao, Q. L. et al. Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv. Funct. Mater. 2015, 25, 3688–3696.

6

Hinchet, R.; Kim, S. W. Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 2015, 9, 7742–7745.

7

Lee, K. Y.; Gupta, M. K.; Kim, S. W. Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 2015, 14, 139–160.

8

Meng, B.; Tang, W.; Too, Z. -H.; Zhang, X. S.; Han, M. D.; Liu, W.; Zhang, H. X. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ. Sci. 2013, 6, 3235–3240.

9

Meng, B.; Tang, W.; Zhang, X. S.; Han, M. D.; Liu, W.; Zhang, H. X. Self-powered flexible printed circuit board with integrated triboelectric generator. Nano Energy 2013, 2, 1101–1106.

10

Yi, F.; Wang, X. F.; Niu, S. M.; Li, S. M.; Yin, Y. J.; Dai, K. R.; Zhang, G. J.; Lin, L.; Wen, Z.; Guo, H. Y. et al. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Sci. Adv. 2016, 2, e1501624.

11

Nguyen, V.; Yang, R. S. Effect of humidity and pressure on the triboelectric nanogenerator. Nano Energy 2013, 2, 604–608.

12

Yu, Y. H.; Li, Z. D.; Wang, Y. M.; Gong, S. Q.; Wang, X. D. Sequential infiltration synthesis of doped polymer films with tunable electrical properties for efficient triboelectric nanogenerator development. Adv. Mater. 2015, 27, 4938–4944.

13

Wang, S. H.; Lin, L.; Xie, Y. N.; Jing, Q. S.; Niu, S. M.; Wang, Z. L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233.

14

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

15

Hu, Y. F.; Yang, J.; Jing, Q. S.; Niu, S. M.; Wu, W. Z.; Wang, Z. L. Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 2013, 7, 10424–10432.

16

Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

17

Wang, X. F.; Niu, S. M.; Yin, Y. J.; Yi, F.; You, Z.; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.

18

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

19

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

20

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

21

Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

22

Niu, S. M.; Wang, Z. L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192.

23
Alley, C. L.; Atwood, K. W. Electronic Engineering; Wiley: New York, 1973.
24

Dascher, D. J. Measuring parasitic capacitance and inductance using TDR. Hewlett-Packard J. 1996, 47, 83–96.

25

Lu, H. Y.; Zhu, J. G.; Hui, S. Y. R. Experimental determination of stray capacitances in high frequency transformers. IEEE T. Power Electr. 2003, 18, 1105–1112.

26

Kinoshita, K.; Tsunoda, K.; Sato, Y.; Noshiro, H.; Yagaki, S.; Aoki, M.; Sugiyama, Y. Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl. Phys. Lett. 2008, 93, 033506.

27

Suzuki, K. Parasitic capacitance of submicrometer MOSFET's. IEEE Trans. Electron Dev. 1999, 46, 1895–1900.

28

Neugebauer, T. C.; Perreault, D. J. Parasitic capacitance cancellation in filter inductors. IEEE T. Power Electr. 2006, 21, 282–288.

29

Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

30

Niu, S. M.; Wang, S. H.; Liu, Y.; Zhou, Y. S.; Lin, L.; Hu, Y. F.; Pradel, K. C.; Wang, Z. L. A theoretical study of grating structured triboelectric nanogenerators. Energy Environ. Sci. 2014, 7, 2339–2349.

Nano Research
Pages 157-171
Cite this article:
Dai K, Wang X, Niu S, et al. Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance. Nano Research, 2017, 10(1): 157-171. https://doi.org/10.1007/s12274-016-1275-7

706

Views

69

Crossref

N/A

Web of Science

67

Scopus

1

CSCD

Altmetrics

Received: 11 July 2016
Revised: 28 August 2016
Accepted: 31 August 2016
Published: 13 October 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return