Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Transient electronics represent an emerging class of technology comprising materials that can vanish in a controlled manner in response to stimuli. In contrast to conventional electronic devices that are designed to operate over the longest possible period, transient electronics are defined by operation typically over a short and well-defined period; when no longer needed, transient electronics undergo self-deconstruction and disappear completely. In this work, we demonstrate the fabrication of thermally triggered transient electronic devices based on a paper substrate, specifically, a nitrocellulose paper. Nitrocellulose paper is frequently used in acts of magic because it consists of highly flammable components that are formed by nitrating cellulose by exposure to nitric acid. Therefore, a complete and rapid destruction of electronic devices fabricated on nitrocellulose paper is possible without producing any residue (i.e., ash). The transience rates can be modified by controlling radio frequency signal-induced voltages that are applied to a silver (Ag) resistive heater, which is stamped on the backside of the nitrocellulose paper. The Ag resistive heater was prepared by a simple, low-cost stamping fabrication, which requires no harsh chemicals or complex thermal treatments. For the electronics on the nitrocellulose paper substrate, we employed semiconducting carbon nanotube (CNT) network channels in the transistor for superior electrical and mechanical properties.
Hwang, S.-W.; Tao, H.; Kim, D.-H.; Cheng, H. Y.; Song, J.-K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y.-S. et al. A physically transient form of silicon electronics. Science 2012, 337, 1640–1644.
Kim, D. H.; Kim, Y. S.; Amsden, J.; Panilaitis, B.; Kaplan, D. L.; Omenetto, F. G.; Zakin, M. R.; Rogers, J. A. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl. Phys. Lett. 2009, 95, 133701.
Kim, D.-H.; Viventi, J.; Amsden, J. J.; Xiao, J. L.; Vigeland, L.; Kim, Y.-S.; Blanco, J. A.; Panilaitis, B.; Frechette, E. S.; Contreras, D. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 2010, 9, 511–517.
Bettinger, C. J.; Bao, Z. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 2010, 22, 651–655.
Irimia-Vladu, M.; Troshin, P. A.; Reisinger, M.; Shmygleva, L.; Kanbur, Y.; Schwabegger, G.; Bodea, M.; Schwödiauer, R.; Mumyatov, A.; Fergus, J. W. et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 2010, 20, 4069–4076.
Hwang, S.-W.; Kang, S.-K.; Huang, X.; Brenckle, M. A.; Omenetto, F. G.; Rogers, J. A. Materials for programmed, functional transformation in transient electronic systems. Adv. Mater. 2015, 27, 47–52.
Brenckle, M. A.; Cheng, H. Y.; Hwang, S.; Tao, H.; Paquette, M.; Kaplan, D. L.; Rogers, J. A.; Huang, Y. G.; Omenetto, F. G. Modulated degradation of transient electronic devices through multilayer silk fibroin pockets. ACS Appl. Mater. Interfaces 2015, 7, 19870–19875.
Jin, S. H.; Shin, J.; Cho, I. T.; Han, S. Y.; Lee, D. J.; Lee, C. H.; Lee, J. H.; Rogers, J. A. Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Appl. Phys. Lett. 2014, 105, 013506.
Hwang, S.-W.; Park, G.; Edwards, C.; Corbin, E. A.; Kang, S.-K.; Cheng, H. Y.; Song, J.-K.; Kim, J.-H.; Yu, S.; Ng, J. et al. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano 2014, 8, 5843–5851.
Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H. Y.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y. G.; Rogers, J. A. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905–3911.
Yin, L.; Cheng, H. Y.; Mao, S. M.; Haasch, R.; Liu, Y. H.; Xie, X.; Hwang, S. W.; Jain, H.; Kang, S. K.; Su, Y. W. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 2014, 24, 645–658.
Kang, S. K.; Hwang, S. W.; Cheng, H. Y.; Yu, S.; Kim, B. H.; Kim, J. H.; Huang, Y. G.; Rogers, J. A. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv. Funct. Mater. 2014, 24, 4427–4434.
Hernandez, H. L.; Kang, S.-K.; Lee, O. P.; Hwang, S.-W.; Kaitz, J. A.; Inci, B.; Park, C. W.; Chung, S.; Sottos, N. R.; Moore, J. S. et al. Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv. Mater. 2014, 26, 7637–7642.
Park, C. W.; Kang, S.-K.; Hernandez, H. L.; Kaitz, J. A.; Wie, D. S.; Shin, J.; Lee, O. P.; Sottos, N. R.; Moore, J. S.; Rogers, J. A. et al. Thermally triggered degradation of transient electronic devices. Adv. Mater. 2015, 27, 3783–3788.
Lee, C. H.; Kang, S. K.; Salvatore, G. A.; Ma, Y. J.; Kim, B. H.; Jiang, Y.; Kim, J. S.; Yan, L. Q.; Wie, D. S.; Banks, A. et al. Wireless microfluidic systems for programmed, functional transformation of transient electronic devices. Adv. Funct. Mater. 2015, 25, 5100–5106.
Acar, H.; ?inar, S.; Thunga, M.; Kessler, M. R.; Hashemi, N.; Montazami, R. Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Adv. Funct. Mater. 2014, 24, 4135–4143.
Wang, H.; Shi, Z. In vitro biodegradation behavior of magnesium and magnesium alloy. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 98, 203–209.
Bevers, L. E.; Hagedoorn, P. L.; Hagen, W. R. The bioinorganic chemistry of tungsten. Coord. Chem. Rev. 2009, 253, 269–290.
Peuster, M.; Fink, C.; von Schnakenburg, C. Biocompatibility of corroding tungsten coils: In vitro assessment of degradation kinetics and cytotoxicity on human cells. Biomaterials 2003, 24, 4057–4061.
Dagdeviren, C.; Hwang, S.-W.; Su, Y. W.; Kim, S.; Cheng, H. Y.; Gur, O.; Haney, R.; Omenetto, F. G.; Huang, Y. G.; Rogers, J. A. Transient, biocompatible electronics and energy harvesters based on ZnO. Small 2013, 9, 3398–3404.
Lam, C. X. F.; Savalani, M. M.; Teoh, S.-H.; Hutmacher, D. W. Dynamics of in vitro polymer degradation of polycaprolactonebased scaffolds: Accelerated versus simulated physiological conditions. Biomed. Mater. 2008, 3, 034108.
Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256.
Sabir, M. I.; Xu, X. X.; Li, L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci. 2009, 44, 5713–5724.
Chiu, L. K.; Chiu, W. J.; Cheng, Y.-L. Effects of polymer degradation on drug released—A mechanistic study of morphology and transport properties in 50: 50 poly(dl-lactideco-glycolide). Int. J. Pharm. 1995, 126, 169–178.
Siegel, A. C.; Phillips, S. T.; Dickey, M. D.; Lu, N. S.; Suo, Z. G.; Whitesides, G. M. Foldable printed circuit boards on paper substrates. Adv. Funct. Mater. 2010, 20, 28–35.
Tobj?rk, D.; ?sterbacka, R. Paper electronics. Adv. Mater. 2011, 23, 1935–1961.
Eder, F.; Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Dehm, C. Organic electronics on paper. Appl. Phys. Lett. 2004, 84, 2673.
Kim, Y.-H.; Moon, D.-G.; Han, J.-I. Organic TFT array on a paper substrate. IEEE Electron Dev. Lett. 2004, 25, 702–704.
Lien, D.-H.; Kao, Z.-K.; Huang, T. H.; Liao, Y.-C.; Lee, S.-C.; He, J.-H. All-printed paper memory. ACS Nano 2014, 8, 7613–7619.
Wang, C.; Chien, J.-C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, highperformance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527–1533.
Snow, E. S.; Campbell, P. M.; Ancona, M. G.; Novak, J. P. High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 2005, 86, 033105.
Wang, C.; Zhang, J. L.; Ryu, K.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.
Cao, Q.; Kim, H.-S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.
Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145–2147.
Zhang, J. L.; Wang, C.; Zhou, C. W. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 2012, 6, 7412–7419.
Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29–53.
Li, J. P.; Liang, J. J.; Jian, X.; Hu, W.; Li, J.; Pei, Q. B. A flexible and transparent thin film heater based on a silver nanowire/heat-resistant polymer composite. Macromol. Mater. Eng. 2014, 299, 1403–1409.
Lee, C. H.; Kim, D. R.; Zheng, X. L. Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method. Nano Lett. 2011, 11, 3435–3439.
Chae, S. H.; Yu, W. J.; Bae, J. J.; Duong, D. L.; Perello, D.; Jeong, H. Y.; Ta, Q. H.; Ly, T. H.; Vu, Q. A.; Yun, M. et al. Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat. Mater. 2013, 12, 403–409.
Zhang, J. L.; Wang, C.; Fu, Y.; Che, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-? oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.
Kim, U. J.; Son, H. B.; Lee, E. H.; Kim, J. M.; Min, S. C.; Park, W. Charge conversion effects of carbon nanotube network transistors by temperature for Al2O3 gate dielectric formation. Appl. Phys. Lett. 2010, 97, 032117.
Kim, B.; Geier, M. L.; Hersam, M. C.; Dodabalapur, A. Inkjet printed circuits on flexible and rigid substrates based on ambipolar carbon nanotubes with high operational stability. ACS Appl. Mater. Interfaces 2015, 7, 27654–27660.