AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles

Piyush Kar1,§( )Samira Farsinezhad1,§Najia Mahdi1Yun Zhang1Uchenna Obuekwe2Himani Sharma1Jing Shen2Natalia Semagina2( )Karthik Shankar1,3( )
Department of Electrical and Computer EngineeringUniversity of Alberta, 9107-116 StreetEdmonton, AlbertaT6G 2V4Canada
Department of Chemical & Materials EngineeringUniversity of Alberta, 9107-116 StreetEdmonton, AlbertaT6G 2V4Canada
NRC National Institute for Nanotechnology 11421 Saskatchewan Dr. NWEdmonton, AlbertaT6G 2M9Canada

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Metal nanoparticle (NP) co-catalysts on metal oxide semiconductor supports are attracting attention as photocatalysts for a variety of chemical reactions. Related efforts seek to make and use Pt-free catalysts. In this regard, we report here enhanced CH4 formation rates of 25 and 60 μmol·g–1·h–1 by photocatalytic CO2 reduction using hitherto unused ZnPd NPs as well as Au and Ru NPs. The NPs are formed by colloidal synthesis and grafted onto short n-type anatase TiO2 nanotube arrays (TNAs), grown anodically on transparent glass substrates. The interfacial electric fields in the NP-grafted TiO2 nanotubes were probed by ultraviolet photoelectron spectroscopy (UPS). Au NP-grafted TiO2 nanotubes (Au-TNAs) showed no band bending, but a depletion region was detected in Ru NP-grafted TNAs (Ru-TNAs) and an accumulation layer was observed in ZnPd NP-grafted TNAs (ZnPd-TNAs). Temperature programmed desorption (TPD) experiments showed significantly greater CO2 adsorption on NP-grafted TNAs. TNAs with grafted NPs exhibit broader and more intense UV–visible absorption bands than bare TNAs. We found that CO2 photoreduction by nanoparticle-grafted TNAs was driven not only by ultraviolet photons with energies greater than the TiO2 band gap, but also by blue photons close to and below the anatase band edge. The enhanced rate of CO2 reduction is attributed to superior use of blue photons in the solar spectrum, excellent reactant adsorption, efficient charge transfer to adsorbates, and low recombination losses.

Electronic Supplementary Material

Download File(s)
12274_2016_1225_MOESM1_ESM.pdf (3.1 MB)

References

1

Mulvihill, M. J.; Beach, E. S.; Zimmerman, J. B.; Anastas, P. T. Green chemistry and green engineering: A framework for sustainable technology development. Ann. Rev. Environ. Resour. 2011, 36, 271–293.

2

Leitner, W. Carbon dioxide as a raw material: The synthesis of formic acid and its derivatives from CO2. Angew. Chem, Int. Ed. 1995, 34, 2207–2221.

3

Yui, T.; Kan, A.; Saitoh, C.; Koike, K.; Ibusuki, T.; Ishitani, O. Photochemical reduction of CO2 using TiO2: Effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS Appl. Mater. Interfaces 2011, 3, 2594–2600.

4

Manzi, A.; Simon, T.; Sonnleitner, C.; Döblinger, M.; Wyrwich, R.; Stern, O.; Stolarczyk, J. K.; Feldmann, J. Light-induced cation exchange for copper sulfide based CO2 reduction. J. Am. Chem. Soc. 2015, 137, 14007–14010.

5

Kar, P.; Farsinezhad, S.; Zhang, X. J.; Shankar, K. Anodic Cu2S and CuS nanorod and nanowall arrays: Preparation, properties and application in CO2 photoreduction. Nanoscale 2014, 6, 14305–14318.

6

Zhang, X. J.; Han, F.; Shi, B.; Farsinezhad, S.; Dechaine, G. P.; Shankar, K. Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays. Angew. Chem. 2012, 124, 12904–12907.

7

Wang, S. B.; Hou, Y. D.; Wang, X. C. Development of a stable MnCO2O4 cocatalyst for photocatalytic CO2 reduction with visible light. ACS Appl. Mater. Interfaces 2015, 7, 4327–4335.

8

Wang, S. B.; Wang, X. C. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl. Catal. B: Environ. 2015, 162, 494–500.

9

Zhai, Q. G.; Xie, S. J.; Fan, W. Q.; Zhang, Q. H.; Wang, Y.; Deng, W. P.; Wang, Y. Photocatalytic conversion of carbon dioxide with water into methane: Platinum and copper(Ⅰ) oxide co-catalysts with a core–shell structure. Angew. Chem. 2013, 125, 5888–5891.

10

Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.

11

Marszewski, M.; Cao, S. W.; Yu, J. G.; Jaroniec, M. Semiconductor-based photocatalytic CO2 conversion. Mater. Horiz. 2015, 2, 261–278.

12

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

13

Wettstein, S. G.; Bond, J. Q.; Alonso, D. M.; Pham, H. N.; Datye, A. K.; Dumesic, J. A. RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to valerolactone. Appl. Catal. B: Environ. 2012, 117–118, 321–329.

14

Fu, J. L.; Yang, K. X.; Ma, C. J.; Zhang, N. W.; Gai, H. J.; Zheng, J. B.; Chen, B. H. Bimetallic Ru–Cu as a highly active, selective and stable catalyst for catalytic wet oxidation of aqueous ammonia to nitrogen. Appl. Catal. B: Environ. 2016, 184, 216–222.

15

Ziaei-azad, H.; Yin, C. -X.; Shen, J.; Hu, Y. F.; Karpuzov, D.; Semagina, N. Size- and structure-controlled mono- and bimetallic Ir–Pd nanoparticles in selective ring opening of indan. J. Catal. 2013, 300, 113–124.

16

Zielinska-Jurek, A.; Kowalska, E.; Sobczak, J. W.; Lisowski, W.; Ohtani, B.; Zaleska, A. Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modifiedtitania photocatalysts activated by visible light. Appl. Catal. B: Environ. 2011, 101, 504–514.

17

Gallo, A.; Marelli, M.; Psaro, R.; Gombac, V.; Montini, T.; Fornasiero, P.; Pievo, R.; Dal Santo, V. Bimetallic Au–Pt/TiO2 photocatalysts active under UV-A and simulated sunlight for H2 production from ethanol. Green Chem. 2012, 14, 330–333.

18

Tsukamoto, D.; Shiro, A.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au–Ag bimetallic alloy nanoparticles. ACS Catal. 2012, 2, 599–603.

19

Amirsolaimani, B.; Zhang, X. J.; Han, F.; Farsinezhad, S.; Mohammadpour, A.; Dechaine, G.; Shankar, K. Effect of the nature of the metal co-catalyst on CO2 photoreduction using fast-grown periodically modulated titanium dioxide nanotube arrays (PMTiNTs). MRS Proc. 2013, 1578, DOI: 10.1557/opl.2013.841.

20

Feng, S. C.; Wang, M.; Zhou, Y.; Li, P.; Tu, W. G.; Zou, Z. G. Double-shelled plasmonic Ag-TiO2 hollow spheres toward visible light-active photocatalytic conversion of CO2 into solar fuel. APL Mater. 2015, 3, 104416.

21

Kang, Q.; Wang, T.; Li, P.; Liu, L. Q.; Chang, K.; Li, M.; Ye, J. H. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au–Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays. Angew. Chem. 2015, 127, 855–859.

22

Farsinezhad, S.; Sharma, H.; Shankar, K. Interfacial band alignment for photocatalytic charge separation in TiO2 nanotube arrays coated with CuPt nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 29723–29733.

23

Xiao, F. X.; Miao, J. W.; Tao, H. B.; Hung, S. F.; Wang, H. Y.; Yang, H. B.; Chen, J. Z.; Chen, R.; Liu, B. One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis. Small 2015, 11, 2115–2131.

24

Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 2009, 9, 731–737.

25

Paramasivam, I.; Jha, H.; Liu, N.; Schmuki, P. A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small 2012, 8, 3073–3103.

26

Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.

27

Kar, P.; Zhang, Y.; Farsinezhad, S.; Mohammadpour, A.; Wiltshire, B. D.; Sharma, H.; Shankar, K. Rutile phase nand p-type anodic titania nanotube arrays with square-shaped pore morphologies. Chem. Commun. 2015, 51, 7816–7819.

28

Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 2005, 5, 191–195.

29

Kocí, K.; Obalová, L.; Matejová, L.; Plachá, D.; Lacny, Z.; Jirkovsky, J.; Šolcová, O. Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal. B: Environ. 2009, 89, 494–502.

30

Murugesan, S.; Smith, Y. R.; Subramanian, V. Hydrothermal synthesis of Bi12TiO20 nanostrucutures using anodized TiO2 nanotubes and its application in photovoltaics. The J. Phys. Chem. Lett. 2010, 1, 1631–1636.

31

Yu, J. G.; Low, J. X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.

32

Xie, T. -F.; Wang, D. -J.; Zhu, L. -J.; Li, T. -J.; Xu, Y. -J. Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2. Mater. Chem. Phys. 2001, 70, 103–106.

33

Tseng, I. -H.; Wu, J. C. S.; Chou, H. -Y. Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catal. 2004, 221, 432–440.

34

Farsinezhad, S.; Mohammadpour, A.; Dalrymple, A. N.; Geisinger, J.; Kar, P.; Brett, M. J.; Shankar, K. Transparent anodic TiO2 nanotube arrays on plastic substrates for disposable biosensors and flexible electronics. J. Nanosci. Nanotechnol. 2013, 13, 2885–2891.

35

Farsinezhad, S.; Dalrymple, A. N.; Shankar, K. Toward single-step anodic fabrication of monodisperse TiO2 nanotube arrays on non-native substrates. Phys. Status Solidi (a) 2014, 211, 1113–1121.

36

Mohammadpour, A.; Kar, P.; Wiltshire, B. D.; Askar, A. M.; Shankar, K. Electron transport, trapping and recombination in anodic TiO2 nanotube arrays. Curr. Nanosci. 2015, 11, 593–614.

37

Shen, J.; Semagina, N. Iridium- and platinum-free ring opening of indan. ACS Catal. 2014, 4, 268–279.

38

Wang, Y.; Toshima, N. Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures. J. Phys. Chem. B 1997, 101, 5301–5306.

39

Xu, X. J.; Pacey, P. D. Oligomerization and cyclization reactions of acetylene. Phys. Chem. Chem. Phys. 2005, 7, 326–333.

40

Wang, W. -N.; An, W. -J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P. Size and structure matter: Enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134, 11276–11281.

41

Hodak, J. H.; Henglein, A.; Hartland, G. V. Photophysics of nanometer sized metal particles: Electron–phonon coupling and coherent excitation of breathing vibrational modes. J. Phys. Chem. B 2000, 104, 9954–9965.

42

Sneed, B. T.; Young, A. P.; Tsung, C. -K. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale 2015, 7, 12248–12265.

43

Shen, J.; Yin, X.; Karpuzov, D.; Semagina, N. PVP-stabilized mono- and bimetallic Ru nanoparticles for selective ring opening. Catal. Sci. Technol. 2013, 3, 208–221.

44

Ziaei-Azad, H.; Semagina, N. Bimetallic catalysts: Requirements for stabilizing PVP removal depend on the surface composition. Appl. Catal. A: Gen. 2014, 482, 327–335.

45

Joo, S. H.; Park, J. Y.; Renzas, J. R.; Butcher, D. R.; Huang, W. Y.; Somorjai, G. A. Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett. 2010, 10, 2709–2713.

46

Reyes, P.; König, M. E.; Pecchi, G.; Concha, I.; López Granados, M.; Fierro, J. L. G. o-Xylene hydrogenation on supported ruthenium catalysts. Catal. Lett. 1997, 46, 71–75.

47

Qian, K.; Sweeny, B. C.; Johnston-Peck, A. C.; Niu, W. X.; Graham, J. O.; DuChene, J. S.; Qiu, J. J.; Wang, Y. -C.; Engelhard, M. H.; Su, D. et al. Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 2014, 136, 9842–9845.

48

Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3, 489–492.

49

Rajan, A.; MeenaKumari, M.; Philip, D. Shape tailored green synthesis and catalytic properties of gold nanocrystals. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2014, 118, 793–799.

50

Dagle, R. A.; Chin, Y. -H.; Wang, Y. The effects of PdZn crystallite size on methanol steam reforming. Top. Catal. 2007, 46, 358–362.

51

Karim, A.; Conant, T.; Datye, A. The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. J. Catal. 2006, 243, 420–427.

52

Kruse, N.; Chenakin, S. XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects. Appl. Catal. A: Gen. 2011, 391, 367–376.

53

Sobczak, J. W.; Andreeva, D. XPS study of Au/TiO2 catalytic systems. Stud. Surf. Sci. Catal. 2000, 130, 3303–3308.

54

Lee, S.; Fan, C. Y.; Wu, T. P.; Anderson, S. L. Agglomeration, support effects, and CO adsorption on Au/TiO2 (110) prepared by ion beam deposition. Surf. Sci. 2005, 578, 5–19.

55

Elmasides, C.; Kondarides, D. I.; Grünert, W.; Verykios, X. E. XPS and FTIR study of Ru/Al2O3 and Ru/TiO2 catalysts: Reduction characteristics and interaction with a methaneoxygen mixture. J. Phys. Chem. B 1999, 103, 5227–5239.

56

Semagina, N.; Renken, A.; Laub, D.; Kiwi-Minsker, L. Synthesis of monodispersed palladium nanoparticles to study structure sensitivity of solvent-free selective hydrogenation of 2-methyl-3-butyn-2-ol. J. Catal. 2007, 246, 308–314.

57

Morozov, I. G.; Belousova, O. V.; Ortega, D.; Mafina, M. -K.; Kuznetcov, M. V. Structural, optical, XPS and magnetic properties of Zn particles capped by ZnO nanoparticles. J. Alloys Compd. 2015, 633, 237–245.

58

Armbrüster, M.; Behrens, M.; Föttinger, K.; Friedrich, M.; Gaudry, É.; Matam, S. K.; Sharma, H. R. The intermetallic compound ZnPd and its role in methanol steam reforming. Catal. Rev. 2013, 55, 289–367.

59

Grimes, C. A.; Mor, G. K. Material properties of TiO2 nanotube arrays: Structural, elemental, mechanical, optical and electrical. In TiO2 Nanotube Arrays; Springer: New York, 2009; pp 67–113.

60

Sexton, B. A.; Hughes, A. E.; Foger, K. XPS investigation of strong metal-support interactions on Group IIIa–Va oxides. J. Catal. 1982, 77, 85–93.

61

Shpiro, E. S.; Dysenbina, B. B.; Tkachenko, O. P.; Antoshin, G. V.; Minachev, K. M. Strong metal-support interaction: The role of electronic and geometric factors in real MeTiO2 catalysts. J. Catal. 1988, 110, 262–274.

62

Lee, K. B.; Lee, K. H.; Cha, J. O.; Ahn, J. S. Ti–O binding states of resistive switching TiO2 thin films prepared by reactive magnetron sputtering. J. Korean Phys. Soc. 2008, 53, 1996–2001.

63

Sasan, K.; Zuo, F.; Wang, Y.; Feng, P. Y. Self-doped Ti3+–TiO2 as a photocatalyst for the reduction of CO2 into a hydrocarbon fuel under visible light irradiation. Nanoscale 2015, 7, 13369–13372.

64

Indrakanti, V. P.; Kubicki, J. D.; Schobert, H. H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook. Energy Environ. Sci. 2009, 2, 745–758.

65

Tanaka, K.; Miyahara, K.; Toyoshima, I. Adsorption of carbon dioxide on titanium dioxide and platinum/titanium dioxide studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy. J. Phys. Chem. 1984, 88, 3504–3508.

66

Rasko, J.; Solymosi, F. Infrared spectroscopic study of the photoinduced activation of CO2 on TiO2 and Rh/TiO2 catalysts. J. Phys. Chem. 1994, 98, 7147–7152.

67

Kaneco, S.; Ohta, K.; Shimizu, Y.; Mizuno, T. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders. In Recent Research Developments in Photochemistry and Photobiology; 1998; pp 91–100.

68

Dey, G. R. Chemical reduction of CO2 to different products during photo catalytic reaction on TiO2 under diverse conditions: An overview. J. Nat. Gas Chem. 2007, 16, 217–226.

69

Neatu, S; Maciá-Agulló, J. A.; Concepción, P.; Garcia, H. Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J. Am. Chem. Soc. 2014, 136, 15969–15976.

70

Liu, L. J.; Gao, F.; Zhao, H. L.; Li, Y. Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B: Environ. 2013, 134-135, 349–358.

71

Zhang, Z. Y.; Wang, Z.; Cao, S. -W.; Xue, C. Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmonenhanced photocatalytic activities for solar-to-fuel conversion. J. Phys. Chem. C 2013, 117, 25939–25947.

72

Tu, W. G.; Zhou, Y.; Liu, Q.; Yan, S. C.; Bao, S. S.; Wang, X. Y.; Xiao, M.; Zou, Z. G. An in situ simultaneous reduction-hydrolysis technique for fabrication of TiO2- graphene 2D sandwich-like hybrid nanosheets: Graphenepromoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane. Adv. Funct. Mater. 2013, 23, 1743–1749.

73

Zarifi, M. H.; Mohammadpour, A.; Farsinezhad, S.; Wiltshire, B. D.; Nosrati, M.; Askar, A. M.; Daneshmand, M.; Shankar, K. Time-resolved microwave photoconductivity (TRMC) using planar microwave resonators: Application to the study of long-lived charge pairs in photoexcited titania nanotube arrays. J. Phys. Chem. C 2015, 119, 14358–14365.

74

Fàbrega, C.; Hernández-Ramírez, F.; Prades, J. D.; Jiménez- Díaz, R.; Andreu, T.; Morante, J. R. On the photoconduction properties of low resistivity TiO2 nanotubes. Nanotechnology 2010, 21, 445703.

75

Zou, J. P.; Zhang, Q.; Huang, K.; Marzari, N. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. C 2010, 114, 10725–10729.

76

Liu, G. H.; Hoivik, N.; Wang, X. M.; Lu, S. S.; Wang, K. Y.; Jakobsen, H. Photoconductive, free-standing crystallized TiO2 nanotube membranes. Electrochim. Acta 2013, 93, 80–86.

77

Zhao, Y.; Hoivik, N.; Wang, K. Y. Photoconductivity of Au-coated TiO2 nanotube arrays. In Proceedings of the 14th IEEE International Conference on Nanotechnology, Toronto, 2014, pp 180–183.

78

Bahnemann, D. W.; Hilgendorff, M.; Memming, R. Charge carrier dynamics at TiO2 particles: Reactivity of free and trapped holes. J. Phys. Chem. B 1997, 101, 4265–4275.

79

Tamaki, Y.; Furube, A.; Murai, M.; Hara, K.; Katoh, R.; Tachiya, M. Direct observation of reactive trapped holes in TiO2 undergoing photocatalytic oxidation of adsorbed alcohols: Evaluation of the reaction rates and yields. J. Am. Chem. Soc. 2006, 128, 416–417.

80

Xi, G. C.; Ouyang, S. X.; Li, P.; Ye, J. H.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395–2399.

81

Li, Y.; Wang, W. -N.; Zhan, Z. L.; Woo, M. -H.; Wu, C. -Y.; Biswas, P. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Appl. Catal. B: Environ. 2010, 100, 386–392.

82

Yang, C. -C.; Yu, Y. -H.; van der Linden, B.; Wu, J. C. S.; Mul, G. Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction? J. Am. Chem. Soc. 2010, 132, 8398–8406.

83

Liu, D.; Fernández, Y.; Ola, O.; Mackintosh, S.; Maroto-Valer, M.; Parlett, C. M. A.; Lee, A. F.; Wu, J. C. S. On the impact of Cu dispersion on CO2 photoreduction over Cu/TiO2. Catal. Commun. 2012, 25, 78–82.

Nano Research
Pages 3478-3493
Cite this article:
Kar P, Farsinezhad S, Mahdi N, et al. Enhanced CH4 yield by photocatalytic CO2 reduction using TiO2 nanotube arrays grafted with Au, Ru, and ZnPd nanoparticles. Nano Research, 2016, 9(11): 3478-3493. https://doi.org/10.1007/s12274-016-1225-4

748

Views

128

Crossref

N/A

Web of Science

130

Scopus

0

CSCD

Altmetrics

Received: 01 May 2016
Revised: 22 June 2016
Accepted: 21 July 2016
Published: 30 August 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return