AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

SANTA: Self-aligned nanotrench ablation via Joule heating for probing sub-20 nm devices

Feng Xiong1,( )Sanchit Deshmukh1Sungduk Hong2Yuan Dai2Ashkan Behnam2Feifei Lian1Eric Pop1( )
Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA

Present address: Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

Show Author Information

Graphical Abstract

Abstract

Manipulating materials at the nanometer scale is challenging, particularly if alignment with nanoscale electrodes is desired. Here, we describe a lithography-free, self-aligned nanotrench ablation (SANTA) technique to create nanoscale "trenches" in a polymer like poly(methyl methacrylate) (PMMA). The nanotrenches are self-aligned with carbon nanotube (CNT) or graphene ribbon electrodes through a simple Joule heating process. Using simulations and experiments we investigated how the Joule power, ambient temperature, PMMA thickness, and substrate properties affect the spatial resolution of this technique. We achieved sub-20 nm nanotrenches, for the first time, by lowering the ambient temperature and reducing the PMMA thickness. We also demonstrated a functioning nanoscale resistive memory (RRAM) bit selfaligned with a CNT control device, achieved through the SANTA approach. This technique provides an elegant and inexpensive method to probe nanoscale devices using self-aligned electrodes, without the use of conventional alignment or lithography steps.

Electronic Supplementary Material

Download File(s)
nr-9-10-2950_ESM.pdf (1.4 MB)

References

1

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163-167.

2

Yao, J.; Yan, H.; Lieber, C. M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires. Nat. Nanotechnol. 2013, 8, 329-335.

3

Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S. P.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526-530.

4

Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858-862.

5

Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229-1232.

6

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487-496.

7

Bae, M. H.; Li, Z. Y.; Aksamija, Z.; Martin, P. N.; Xiong, F.; Ong, Z. Y.; Knezevic, I.; Pop, E. Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 2013, 4, 1734-1740.

8

Behnam, A.; Lyons, A. S.; Bae, M. H.; Chow, E. K.; Islam, S.; Neumann, C. M.; Pop, E. Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition. Nano Lett. 2012, 12, 4424-4430.

9

Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L. M.; O'Brien, S. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356-359.

10

Prasongkit, J.; Grigoriev, A.; Pathak, B.; Ahuja, R.; Scheicher, R. H. Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. Nano Lett. 2011, 11, 1941-1945.

11

Xiong, F.; Liao, A. D.; Estrada, D.; Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 2011, 332, 568-570.

12

Xiong, F.; Bae, M. H.; Dai, Y.; Liao, A. D.; Behnam, A.; Carrion, E. A.; Hong, S.; Ielmini, D.; Pop, E. Self-aligned nanotube-nanowire phase change memory. Nano Lett. 2013, 13, 464-469.

13

Kim, I. D.; Rothschild, A.; Tuller, H. L. Advances and new directions in gas-sensing devices. Acta Mater. 2013, 61, 974-1000.

14

Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D. Nanometre-scale thermometry in a living cell. Nature 2013, 500, 54-58.

15

Yun, J.; Jin, C. Y.; Ahn, J. H.; Jeon, S.; Park, I. A self-heated silicon nanowire array: Selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications. Nanoscale 2013, 5, 6851-6856.

16

Jin, S. H.; Dunham, S. N.; Song, J. Z.; Xie, X.; Kim, J. H.; Lu, C. F.; Islam, A.; Du, F.; Kim, J.; Felts, J. et al. Using nanoscale thermocapillary flows to create arrays of purely semiconducting single-walled carbon nanotubes. Nat. Nanotechnol. 2013, 8, 347-355.

17

Zhang, H. J.; Wong, C. -L.; Hao, Y. F.; Wang, R.; Liu, X. G.; Stellacci, F.; Thong, J. T. L. Self-aligned nanolithography by selective polymer dissolution. Nanoscale 2010, 2, 2302-2306.

18

Jin, C. Y.; Li, Z. Y.; Williams, R. S.; Lee, K. C.; Park, I. Localized temperature and chemical reaction control in nanoscale space by nanowire array. Nano Lett. 2011, 11, 4818-4825.

19

Chen, C. C.; Lin, Y. S.; Sang, C. H.; Sheu, J. T. Localized joule heating as a mask-free technique for the local synthesis of ZnO nanowires on silicon nanodevices. Nano Lett. 2011, 11, 4736-4741.

20

Englander, O.; Christensen, D.; Kim, J.; Lin, L. W. Post-processing techniques for locally self-assembled silicon nanowires. Sensor. Actuat. A-Phys. 2007, 135, 10-15.

21

Liao, A.; Alizadegan, R.; Ong, Z. Y.; Dutta, S.; Xiong, F.; Hsia, K. J.; Pop, E. Thermal dissipation and variability in electrical breakdown of carbon nanotube devices. Phys. Rev. B 2010, 82, 205406.

22

Xiong, F.; Liao, A.; Pop, E. Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters. Appl. Phys. Lett. 2009, 95, 243103.

23

Shi, L.; Zhou, J. H.; Kim, P.; Bachtold, A.; Majumdar, A.; McEuen, P. L. Thermal probing of energy dissipation in current-carrying carbon nanotubes. J. Appl. Phy. 2009, 105, 104306.

24

Salehi-Khojin, A.; Estrada, D.; Lin, K. Y.; Bae, M. -H.; Xiong, F.; Pop, E.; Masel, R. I. Polycrystalline graphene ribbons as chemiresistors. Adv. Mater. 2012, 24, 53-57.

25

Li, Z. Y.; Bae, M. H.; Pop, E. Substrate-supported thermometry platform for nanomaterials like graphene, nanotubes, and nanowires. Appl. Phys. Lett. 2014, 105, 023107.

26

Pop, E. The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes. Nanotechnology 2008, 19, 295202.

27

Pop, E. Energy dissipation and transport in nanoscale devices. Nano Res. 2010, 3, 147-169.

28

Alizadegan, R.; Liao, A. D.; Xiong, F.; Pop, E.; Hsia, K. J. Effects of tip-nanotube interactions on atomic force microscopy imaging of carbon nanotubes. Nano Res. 2012, 5, 235-247.

29

Lin, Y. C.; Bai, J. W.; Huang, Y. Self-aligned nano lithography in a nanogap. Nano Lett. 2009, 9, 2234-2238.

30

Hess, C.; Baumann, C.; Ammerahl, U.; Büchner, B.; Heidrich-Meisner, F.; Brenig, W.; Revcolevschi, A. Magnon heat transport in (Sr, Ca, La)14Cu24O41. Phys. Rev. B 2001, 64, 184305.

31

Islam, S.; Li, Z. Y.; Dorgan, V. E.; Bae, M. H.; Pop, E. Role of Joule heating on current saturation and transient behavior of graphene transistors. IEEE Electr. Device L. 2013, 34, 166-168.

32

Pop, E.; Mann, D. A.; Goodson, K. E.; Dai, H. J. Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys. 2007, 101, 093710.

33

Behnam, A.; Xiong, F.; Cappelli, A.; Wang, N. C.; Carrion, E. A.; Hong, S.; Dai, Y.; Lyons, A. S.; Chow, E. K.; Piccinini, E. et al. Nanoscale phase change memory with graphene ribbon electrodes. Appl. Phys. Lett. 2015, 107, 123508.

34

English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 2016, 16, 3824-3840.

Nano Research
Pages 2950-2959
Cite this article:
Xiong F, Deshmukh S, Hong S, et al. SANTA: Self-aligned nanotrench ablation via Joule heating for probing sub-20 nm devices. Nano Research, 2016, 9(10): 2950-2959. https://doi.org/10.1007/s12274-016-1180-0

715

Views

3

Crossref

N/A

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 14 May 2016
Revised: 10 June 2016
Accepted: 13 June 2016
Published: 13 July 2016
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016
Return