Journal Home > Volume 9 , Issue 10

Two-dimensional ZrS2 materials have potential for applications in nanoelectronics because of their theoretically predicted high mobility and sheet current density. Herein, we report the thickness and temperature dependent transport properties of ZrS2 multilayers that were directly deposited on hexagonal boron nitride (h-BN) by chemical vapor deposition. Hysteresis-free gate sweeping, metalinsulator transition, and Tγ (γ ~ 0.82–1.26) temperature dependent mobility were observed in the ZrS2 films.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Thickness and temperature dependent electrical properties of ZrS2 thin films directly grown on hexagonal boron nitride

Show Author's information Yiming Zhu1,2Xinsheng Wang2Mei Zhang2Congzhong Cai1( )Liming Xie2( )
State Key Laboratory of Coal Mine Disaster Dynamics and ControlDepartment of Applied PhysicsChongqing UniversityChongqing400044China
CAS Key Laboratory of Standardization and Measurement for NanotechnologyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China

Abstract

Two-dimensional ZrS2 materials have potential for applications in nanoelectronics because of their theoretically predicted high mobility and sheet current density. Herein, we report the thickness and temperature dependent transport properties of ZrS2 multilayers that were directly deposited on hexagonal boron nitride (h-BN) by chemical vapor deposition. Hysteresis-free gate sweeping, metalinsulator transition, and Tγ (γ ~ 0.82–1.26) temperature dependent mobility were observed in the ZrS2 films.

Keywords: two-dimensional materials, chemical vapor deposition, mobility, ZrS2, electrical transport

References(36)

1

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

2

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

3

Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676-681.

4

Feng, Q. L.; Zhu, Y. M.; Hong, J. H.; Zhang, M.; Duan, W. J.; Mao, N. N.; Wu, J. X.; Xu, H.; Dong, F. L.; Lin, F. et al. Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys. Adv. Mater. 2014, 26, 2648-2653.

5

Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100-103.

6

Jo, S.; Ubrig, N.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 2014, 14, 2019-2025.

7

Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.

8

Yoon, Y.; Ganapathi, K.; Salahuddin, S. How hood can monolayer MoS2 transistors be? Nano Lett. 2011, 11, 3768-3773.

9

Pradhan, N. R.; Rhodes, D.; Feng, S. M.; Xin, Y.; Memaran, S.; Moon, B. -H.; Terrones, H.; Terrones, M.; Balicas, L. Field-effect transistors based on few-layered α-MoTe2. ACS Nano 2014, 8, 5911-5920.

10

Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815-820.

11

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. -Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

12

Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230-5234.

13

Ovchinnikov, D.; Allain, A.; Huang, Y. S.; Dumcenco, D.; Kis, A. Electrical transport properties of single-layer WS2. ACS Nano 2014, 8, 8174-8181.

14

Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon- limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 2012, 85, 115317.

15

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.

16

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731-1737.

17
Huang, Z. S.; Zhang, W. X.; Zhang, W. L.; Li, Y. R. Screening for two dimensional MX2 semiconductors with possible high room temperature mobility. 2015, arXiv: 1505.05698. arXiv. org e-Print archive. http://arxiv.org/abs/1505.05698 (accessed Feb 2, 2016).
18

Zhang, M.; Zhu, Y. M.; Wang, X. S.; Feng, Q. L.; Qiao, S. L.; Wen, W.; Chen, Y. F.; Cui, M. H.; Zhang, J.; Cai, C. Z. et al. Controlled synthesis of ZrS2 monolayer and few layers on hexagonal boron nitride. J. Am. Chem. Soc. 2015, 137, 7051-7054.

19

Zhang, L. M.; Liu, K. H.; Wong, A. B.; Kim, J.; Hong, X. P.; Liu, C.; Cao, T.; Louie, S. G.; Wang, F.; Yang, P. D. Three-dimensional spirals of atomic layered MoS2. Nano Lett. 2014, 14, 6418-6423.

20

Chen, L.; Liu, B. L.; Abbas, A. N.; Ma, Y. Q.; Fang, X.; Liu, Y. H.; Zhou, C. W. Screw-dislocation-driven growth of two-dimensional few-layer and pyramid-like WSe2 by sulfur- assisted chemical vapor deposition. ACS Nano 2014, 8, 11543-11551.

21

Patel, S. G.; Arora, S. K.; Agarwal, M. K. CVT growth of zirconium sulphoselenide single crystals. Bull. Mater. Sci. 1998, 21, 297-301.

22

Stacy, A. M.; Hodul, D. T. Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges. J. Phys. Chem. Solids 1985, 46, 405-409.

23

Roubi, L.; Carlone, C. Resonance Raman spectrum of HfS2 and ZrS2. Phys. Rev. B 1988, 37, 6808.

24

Cao, Y.; Mishchenko, A.; Yu, G. L.; Khestanova, E.; Rooney, A. P.; Prestat, E.; Kretinin, A. V.; Blake, P.; Shalom, M. B.; Woods, C. et al. Quality heterostructures from two-dimensional crystals unstable in air by their assembly in inert atmosphere. Nano Lett. 2015, 15, 4914-4921.

25

Tao, L.; Cinquanta, E.; Chiappe, D.; Grazianetti, C.; Fanciulli, M.; Dubey, M.; Molle, A.; Akinwande, D. Silicene field- effect transistors operating at room temperature. Nat. Nanotechnol. 2015, 10, 227-231.

26

Kim, W.; Javey, A.; Vermesh, O.; Wang, Q.; Li, Y. M.; Dai, H. J. Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 2003, 3, 193-198.

27

Late, D. J.; Liu, B.; Matte, H. S. S. R.; Dravid, V. P.; Rao, C. N. R. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635-5641.

28

Bao, W. Z.; Cai, X. H.; Kim, D.; Sridhara, K.; Fuhrer, M. S. High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects. Appl. Phys. Lett. 2013, 102, 042104.

29

Kalon, G.; Shin, Y. J.; Truong, V. G.; Kalitsov, A.; Yang, H. The role of charge traps in inducing hysteresis: Capacitance- voltage measurements on top gated bilayer graphene. Appl. Phys. Lett. 2011, 99, 083109.

30

Joshi, P.; Romero, H. E.; Neal, A. T.; Toutam, V. K.; Tadigadapa, S. A. Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates. J. Phys. : Condens. Matter 2010, 22, 334214.

31

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high- quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.

32

Punnoose, A.; Finkel'stein, A. M. Metal-insulator transition in disordered two-dimensional electron systems. Science 2005, 310, 289-291.

33

Kaasbjerg, K.; Thygesen, K. S.; Jauho, A. P. Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS2 from first principles. Phys. Rev. B 2013, 87, 235312.

34

Ma, N.; Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 2014, 4, 011043.

35

Zeng, L.; Xin, Z.; Chen, S. W.; Du, G.; Kang, J. F.; Liu, X. Y. Remote phonon and impurity screening effect of substrate and gate dielectric on electron dynamics in single layer MoS2. Appl. Phys. Lett. 2013, 103, 113505.

36

Konar, A.; Fang, T.; Jena, D. Effect of high-κ gate dielectrics on charge transport in graphene-based field effect transistors. Phys. Rev. B 2010, 82, 115452.

File
nr-9-10-2931_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 April 2016
Revised: 12 June 2016
Accepted: 13 June 2016
Published: 20 July 2016
Issue date: October 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

L. M. X. acknowledges support from National Natural Science Foundation of China (Nos. 21373066 and 11304052), Beijing Nova programme (No. Z151100000315081) and Beijing Talents Fund (No. 2015000021223ZK17). C. Z. C. acknowledges support from the Program for New Century Excellent Talents in University of China (No. NCET-07-0903).

Return