Journal Home > Volume 9 , Issue 9

By means of vibrational spectroscopy and density functional theory (DFT), we investigate CO adsorption on phosphorene-based systems. We find stable CO adsorption at room temperature on both phosphorene and bulk black phosphorus. The adsorption energy and vibrational spectrum are calculated for several possible configurations of the CO overlayer. We find that the vibrational spectrum is characterized by two different C–O stretching energies. The experimental data are in good agreement with the prediction of the DFT model and reveal the unusual C–O vibrational band at 165–180 meV, activated by the lateral interactions in the CO overlayer.


menu
Abstract
Full text
Outline
About this article

Unusually strong lateral interaction in the CO overlayer in phosphorene-based systems

Show Author's information Antonio Politano1( )Miriam Serena Vitiello2Leonardo Viti2Jin Hu3Zhiqiang Mao3Jiang Wei3Gennaro Chiarello1Danil W. Boukhvalov4,5
Department of PhysicsUniversity of Calabria, via ponte Bucci, 31/C87036Rende (CS), Italy
Istituto Nanoscienze–CNR and Scuola Normale Superiore Piazza San Silvestro 12NEST, Pisa, I-56127Italy
Department of Physics and Engineering PhysicsTulane UniversityNew OrleansLA70118USA
Department of Chemistry, Hanyang University17 Haengdang-dong, Seongdong-gu, Seoul, 133-791Republic of Korea
Theoretical Physics and Applied Mathematics DepartmentUral Federal UniversityMira Street 19620002Ekaterinburg, Russia

Abstract

By means of vibrational spectroscopy and density functional theory (DFT), we investigate CO adsorption on phosphorene-based systems. We find stable CO adsorption at room temperature on both phosphorene and bulk black phosphorus. The adsorption energy and vibrational spectrum are calculated for several possible configurations of the CO overlayer. We find that the vibrational spectrum is characterized by two different C–O stretching energies. The experimental data are in good agreement with the prediction of the DFT model and reveal the unusual C–O vibrational band at 165–180 meV, activated by the lateral interactions in the CO overlayer.

Keywords: density functional theory, carbon monoxide, phosphorene, vibrational spectroscopy

References(30)

1

Wang, Y. L.; Cong, C. X.; Fei, R. X.; Yang, W. H.; Chen, Y.; Cao, B. C.; Yang, L.; Yu, T. Remarkable anisotropic phonon response in uniaxially strained few-layer black phosphorus. Nano Res. 2015, 8, 3944-3953.

2

Zhu, W. N.; Yogeesh, M. N.; Yang, S. X.; Aldave, S. H.; Kim, J. -S.; Sonde, S.; Tao, L.; Lu, N. S.; Akinwande, D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 2015, 15, 1883-1890.

3

Wang, C. -X.; Zhang, C.; Jiang, J. -W.; Park, H. S.; Rabczuk, T. Mechanical strain effects on black phosphorus nanoresonators. Nanoscale 2016, 8, 901-905.

4

Viti, L.; Hu, J.; Coquillat, D.; Knap, W.; Tredicucci, A.; Politano, A.; Vitiello, M. S. Black phosphorus terahertz photodetectors. Adv. Mater. 2015, 27, 5567-5572.

5

Feng, Q.; Yan, F. G.; Luo, W. G.; Wang, K. Y. Charge trap memory based on few-layer black phosphorus. Nanoscale 2016, 8, 2686-2692.

6

Zhang, X.; Xie, H. M.; Liu, Z. D.; Tan, C. L.; Luo, Z. M.; Li, H.; Lin, J. D.; Sun, L. Q.; Chen, W.; Xu, Z. C. et al. Black phosphorus quantum dots. Angew. Chem., Int. Ed. 2015, 54, 3653-3657.

7

Gillgren, N.; Wickramaratne, D.; Shi, Y. M.; Espiritu, T.; Yang, J. W.; Hu, J.; Wei, J.; Liu, X.; Mao, Z. Q.; Watanabe, K. et al. Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures. 2D Mater. 2015, 2, 011001.

8

Island, J. O.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Environmental instability of few- layer black phosphorus. 2D Mater. 2015, 2, 011002.

9

Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. -S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964-6970.

10

Sa, B. S.; Li, Y. -L.; Qi, J. S.; Ahuja, R.; Sun, Z. M. Strain engineering for phosphorene: The potential application as a photocatalyst. J. Phys. Chem. C 2014, 118, 26560-26568.

11

Ray, S. J. First-principles study of MoS2, phosphorene and graphene based single electron transistor for gas sensing applications. Sens. Actuators B: Chem. 2016, 222, 492-498.

12

Kou, L. Z.; Frauenheim, T.; Chen, C. F. Phosphorene as a superior gas sensor: Selective adsorption and distinct I-V response. J. Phys. Chem. Lett. 2014, 5, 2675-2681.

13

Wang, G. X.; Pandey, R.; Karna, S. P. Phosphorene oxide: Stability and electronic properties of a novel two-dimensional material. Nanoscale 2015, 7, 524-531.

14

Edmonds, M. T.; Tadich, A.; Carvalho, A.; Ziletti, A.; O*Donnell, K. M.; Koenig, S. P.; Coker, D. F.; Özyilmaz, B.; Neto, A. H. C.; Fuhrer, M. S. Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 2015, 7, 14557-14562.

15

Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L*Heureux, A. -L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826-832.

16

Cai, Y. Q.; Ke, Q. Q.; Zhang, G.; Zhang, Y. -W. Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J. Phys. Chem. C 2015, 119, 3102-3110.

17

Puschmann, F. F.; Stein, D.; Heift, D.; Hendriksen, C.; Gal, Z. A.; Grützmacher, H. -F.; Grützmacher, H. Phosphination of carbon monoxide: A simple synthesis of sodium phosphaethynolate (NaOCP). Angew. Chem., Int. Ed. 2011, 50, 8420-8423.

18

Politano, A.; Chiarello, G. Vibrational investigation of catalyst surfaces: Change of the adsorption site of CO molecules upon coadsorption. J. Phys. Chem. C 2011, 115, 13541-13553.

19

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Mat 2009, 21, 395502.

20

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

21

Barone, V.; Casarin, M.; Forrer, D.; Pavone, M.; Sambi, M.; Vittadini, A. Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases. J. Comput. Chem. 2009, 30, 934-939.

22

Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892-7895.

23

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

24

Boukhvalov, D. W.; Rudenko, A. N.; Prishchenko, D. A.; Mazurenko, V. G.; Katsnelson, M. I. Chemical modifications and stability of phosphorene with impurities: A first principles study. Phys. Chem. Chem. Phys. 2015, 17, 15209-15217.

25

Stroppa, A.; Termentzidis, K.; Paier, J.; Kresse, G.; Hafner, J. CO adsorption on metal surfaces: A hybrid functional study with plane-wave basis set. Phys. Rev. B 2007, 76, 195440.

26

Sterrer, M.; Yulikov, M.; Risse, T.; Freund, H. -J.; Carrasco, J.; Illas, F.; Di Valentin, C.; Giordano, L.; Pacchioni, G. When the reporter induces the effect: Unusual IR spectra of CO on Au1/MgO(001)/Mo(001). Angew. Chem., Int. Ed. 2006, 45, 2633-2635.

27

Cui, S. M.; Pu, H. H.; Wells, S. A.; Wen, Z. H.; Mao, S.; Chang, J. B.; Hersam, M. C.; Chen, J. H. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 2015, 6, 8632.

28

Politano, A.; Chiarello, G.; Benedek, G.; Chulkov, E. V.; Echenique, P. M. Vibrational spectroscopy and theory of alkali metal adsorption and co-adsorption on single-crystal surfaces. Surf. Sci. Rep. 2013, 68, 305-389.

29

Heikkinen, O.; Pinto, H.; Sinha, G.; Hämäläinen, S. K.; Sainio, J.; Öberg, S.; Briddon, P. R.; Foster, A. S.; Lahtinen, J. Characterization of a hexagonal phosphorus adlayer on platinum (111). J. Phys. Chem. C 2015, 119, 12291-12297.

30

Peng, X. H.; Wei, Q. Chemical scissors cut phosphorene nanostructures. Mater. Res. Express 2014, 1, 045041.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 March 2016
Revised: 30 April 2016
Accepted: 12 May 2016
Published: 04 July 2016
Issue date: September 2016

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

A. P. and G. C. thank Vito Fabio for technical support. The work at Tulane is supported by the US Department of Energy under grant DE-SC0014208 (support for single crystal growth and structure characterization).

Return