Journal Home > Volume 9 , Issue 5

Sub-micron color sensors are developed, using carbon nanotubes (CNTs). The color sensor consists of an array of two photodiodes with different spectral responses, fabricated using controlled electric peeling-off and doping-free techniques on a single semiconducting double-wall CNT. The CNT photodiodes exhibit intrinsic broad spectral responses from 640 to 2, 100 nm, large linear dynamic ranges of over 60 dB, and sub-micron pixel size. This method explores the unique properties of multi-wall CNTs, and may be readily used for large-scale fabrication of high performance color sensor arrays, when arrays of parallel multi-wall CNTs become available.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanoscale color sensors made on semiconducting multi-wall carbon nanotubes

Show Author's information Nan Wei1Huixin Huang1,2Yang Liu1,2Leijing Yang1Fanglin Wang1Huanhuan Xie3Yingying Zhang3Fei Wei3Sheng Wang1( )Lianmao Peng1( )
Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijing100871China
Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China
Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China

Abstract

Sub-micron color sensors are developed, using carbon nanotubes (CNTs). The color sensor consists of an array of two photodiodes with different spectral responses, fabricated using controlled electric peeling-off and doping-free techniques on a single semiconducting double-wall CNT. The CNT photodiodes exhibit intrinsic broad spectral responses from 640 to 2, 100 nm, large linear dynamic ranges of over 60 dB, and sub-micron pixel size. This method explores the unique properties of multi-wall CNTs, and may be readily used for large-scale fabrication of high performance color sensor arrays, when arrays of parallel multi-wall CNTs become available.

Keywords: carbon nanotubes, optoelectronic devices, color sensors, barrier-free bipolar diodes

References(40)

1

Nozaki, H.; Adachi, T. Color sensor. U.S. Patent 4, 677, 289, Jun 30, 1987.

2

Rutz, F.; Rehm, R.; Wörl, A.; Schmitz, J.; Wauro, M.; Niemasz, J.; Masur, M.; Walther, M.; Scheibner, R.; Ziegler, J. Imaging detection of CO2 using a bispectral type-Ⅱ superlattice infrared camera. In Proceedings of the 11th International Conference on Quantitative InfraRed Thermography, Naples, Italy, 2012, pp 1-7.

3

Park, H.; Dan, Y. P.; Seo, K.; Yu, Y. J.; Duane, P. K.; Wober, M.; Crozier, K. B. Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. Nano Lett. 2014, 14, 1804-1809.

4

Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136-154.

5

Theuwissen, A. CMOS image sensors: State-of-the-art and future perspectives. In Proceedings of the 33rd European Solid State Circuits Conference, Munich, Germany, 2007, pp 21-27.

6

Eid, E. S. Study of limitations on pixel size of very high resolution image sensors. In Proceedings of the 18th National Radio Science Conference, Mansoura, Egypt, 2001, pp 15-28.

7

Farrell, J.; Xiao, F.; Kavusi, S. Resolution and light sensitivity tradeoff with pixel size. In Proceedings of the SPIE 6169, Digital Photography Ⅱ, San Jose, CA, USA, 2006, pp 60690n-60690n-8.

8

Baylet, J.; Gravrand, O.; Laffosse, E.; Vergnaud, C.; Ballerand, S.; Aventurier, B.; Deplanche, J. C.; Ballet, P.; Castelein, P.; Chamonal, J. P. et al. Study of the pixel-pitch reduction for HgCdTe infrared dual-band detectors. J. Electron. Mater. 2004, 33, 690-700.

9

Cuche, E.; Bevilacqua, F.; Depeursinge, C. Digital holography for quantitative phase-contrast imaging. Opt. Lett. 1999, 24, 291-293.

10

Yamaguchi, I.; Zhang, T. Phase-shifting digital holography. Opt. Lett. 1997, 22, 1268-1270.

11

Lai, K. W. C.; Xi, N.; Fung, C. K. M.; Chen, H. Z.; Tarn, T. -J. Engineering the band gap of carbon nanotube for infrared sensors. Appl. Phys. Lett. 2009, 95, 221107.

12

Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555-2558.

13

Zhang, R. F.; Ning, Z. Y.; Zhang, Y. Y.; Zheng, Q. S.; Chen, Q.; Xie, H. H.; Zhang, Q.; Qian, W. Z.; Wei, F. Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nat. Nanotechnol. 2013, 8, 912-916.

14

Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Wang, H. D.; Nie, J. Q.; Wen, Q.; Wei, F. Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nat. Commun. 2013, 4, 1727.

15

Wen, Q.; Qian, W. Z.; Nie, J. Q.; Cao, A. Y.; Ning, G. Q.; Wang, Y.; Hu, L.; Zhang, Q.; Huang, J. Q.; Wei, F. 100 mm long, semiconducting triple-walled carbon nanotubes. Adv. Mater. 2010, 22, 1867-1871.

16

Zhang, R. F.; Zhang, Y. Y.; Zhang, Q.; Xie, H. H.; Qian, W. Z.; Wei, F. Growth of half-meter long carbon nanotubes based on schulz-flory distribution. ACS Nano 2013, 7, 6156-6161.

17

Wei, N.; Liu, Y.; Xie, H. H.; Wei, F.; Wang, S.; Peng, L. -M. Carbon nanotube light sensors with linear dynamic range of over 120 dB. Appl. Phys. Lett. 2014, 105, 073107.

18

Yu, D. M.; Wang, S.; Ye, L. H.; Li, W.; Zhang, Z. Y.; Chen, Y. B.; Zhang, J.; Peng, L. -M. Electroluminescence from serpentine carbon nanotube based light-emitting diodes on quartz. Small 2014, 10, 1050-1056.

19

Liu, Y.; Wei, N.; Zeng, Q. S.; Han, J.; Huang, H. X.; Zhong, D. L.; Wang, F. L.; Ding, L.; Xia, J. Y.; Xu, H. T. et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability. Adv. Opt. Mater. 2016, 4, 238-245.

20

Bourlon, B.; Glattli, D. C.; Plaçais, B.; Berroir, J. M.; Miko, C.; Forró, L.; Bachtold, A. Geometrical dependence of high-bias current in multiwalled carbon nanotubes. Phys. Rev. Lett. 2004, 92, 026804-1-026804-4.

21

Collins, P. G.; Avouris, P. Multishell conduction in multiwalled carbon nanotubes. Appl. Phys. A 2002, 74, 329-332.

22

Collins, P. G.; Hersam, M.; Arnold, M.; Martel, R.; Avouris, P. Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3128-3131.

23

Tsutsui, M.; Taninouchi, Y. K.; Kurokawa, S.; Sakai, A. Electrical breakdown of short multiwalled carbon nanotubes. J. Appl. Phys. 2006, 100, 094302.

24

Chiu, H. -Y.; Deshpande, V. V.; Postma, H. W. C.; Lau, C. N.; Mikó, C.; Forró, L.; Bockrath, M. Ballistic phonon thermal transport in multiwalled carbon nanotubes. Phys. Rev. Lett. 2005, 95, 226101-1-226101-4.

25

Brown, E.; Hao, L.; Gallop, J. C.; MacFarlane, J. C. Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes. Appl. Phys. Lett. 2005, 87, 023107.

26

Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706-709.

27

Liu, K. H.; Wang, W. L.; Xu, Z.; Bai, X. D.; Wang, E. G.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Chirality-dependent transport properties of double-walled nanotubes measured in situ on their field-effect transistors. J. Am. Chem. Soc. 2009, 131, 62-63.

28

Wang, S.; Liang, X. L.; Chen, Q.; Yao, K.; Peng, L. -M. High-field electrical transport and breakdown behavior of double-walled carbon nanotube field-effect transistors. Carbon 2007, 45, 760-765.

29

Bouilly, D.; Cabana, J.; Meunier, F.; Desjardins-Carriere, M.; Lapointe, F.; Gagnon, P.; Larouche, F. L.; Adam, E.; Paillet, M.; Martel, R. Wall-selective probing of double-walled carbon nanotubes using covalent functionalization. ACS Nano 2011, 5, 4927-4934.

30

Moore, K. E.; Pfohl, M.; Tune, D. D.; Hennrich, F.; Dehm, S.; Chakradhanula, V. S. K.; Kübel, C.; Krupke, R.; Flavel, B. S. Sorting of double-walled carbon nanotubes according to their outer wall electronic type via a gel permeation method. ACS Nano 2015, 9, 3849-3857.

31

Deborde, T.; Aspitarte, L.; Sharf, T.; Kevek, J. W.; Minot, E. D. Determining the chiral index of semiconducting carbon nanotubes using photoconductivity resonances. J. Phys. Chem. C 2014, 118, 9946-9950.

32

Qiu, X. H.; Freitag, M.; Perebeinos, V.; Avouris, P. Photoconductivity spectra of single-carbon nanotubes: Implications on the nature of their excited states. Nano Lett. 2005, 5, 749-752.

33

Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. Photoconductivity of single carbon nanotubes. Nano Lett. 2003, 3, 1067-1071.

34

Liu, K. H.; Jin, C. H.; Hong, X. P.; Kim, J.; Zettl, A.; Wang, E. G.; Wang, F. Van der Waals-coupled electronic states in incommensurate double-walled carbon nanotubes. Nat. Phys. 2014, 10, 737-742.

35

Tang, L.; Kocabas, S. E.; Latif, S.; Okyay, A. L.; Ly-Gagnon, D. S.; Saraswat, K. C.; Miller, D. A. B. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat. Photonics 2008, 2, 226-229.

36

Rogalski, A. Recent progress in infrared detector technologies. Infrared Phys. Technol. 2011, 54, 136-154.

37

Gabor, N. M. Extremely efficient and ultrafast: Electrons, holes, and their interactions in the carbon nanotube PN junction. Ph. D. Dissertation, Cornell University, Ithaca, New York, USA, 2012.

38

Franklin, A. D. Electronics: The road to carbon nanotube transistors. Nature 2013, 498, 443-444.

39

Liang, S. B.; Zhang, Z. Y.; Pei, T.; Li, R. M.; Li, Y.; Peng, L. M. Reliability tests and improvements for Sc-contacted n-type carbon nanotube transistors. Nano Res. 2013, 6, 535-545.

40

Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352-356.

File
nr-9-5-1470_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 December 2015
Revised: 30 January 2016
Accepted: 03 February 2016
Published: 29 September 2016
Issue date: May 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61321001, 61427901-002, 61390504 and 61271051), and Beijing Municipal Science and Technology Commission (No. Z151100003315009).

Return