Journal Home > Volume 9 , Issue 5

Colloidal gold (Au), a well-tolerated nanomaterial, is currently exploited for several applications in nanomedicine. We show that gold nanoparticles tagged with a novel tumor-homing peptide containing Asn-Gly-Arg (NGR), a ligand of CD13 expressed by the tumor neovasculature, can be exploited as carriers for cytokine delivery to tumors. Biochemical and functional studies showed that the NGR molecular scaffold/linker used for gold functionalization is critical for CD13 recognition. Using fibrosarcoma-bearing mice, NGR-tagged nanodrugs could deliver extremely low, yet pharmacologically active doses of tumor necrosis factor (TNF), an anticancer cytokine, to tumors with no evidence of toxicity. Mechanistic studies confirmed that CD13 targeting was a primary mechanism of drug delivery and excluded a major role of integrin targeting consequent to NGR deamidation, a degradation reaction that generates the isoAsp-Gly-Arg (isoDGR) integrin ligand. NGR-tagged gold nanoparticles can be used, in principle, as a novel platform for single- or multi-cytokine delivery to tumor endothelial cells for cancer therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors

Show Author's information Flavio Curnis1( )Martina Fiocchi1Angelina Sacchi1Alessandro Gori2Anna Gasparri1Angelo Corti1,3( )
Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilan20132Italy
Istituto di Chimica del Riconoscimento MolecolareCNRMilan20131Italy
Vita Salute San Raffaele UniversityMilan20132Italy

Abstract

Colloidal gold (Au), a well-tolerated nanomaterial, is currently exploited for several applications in nanomedicine. We show that gold nanoparticles tagged with a novel tumor-homing peptide containing Asn-Gly-Arg (NGR), a ligand of CD13 expressed by the tumor neovasculature, can be exploited as carriers for cytokine delivery to tumors. Biochemical and functional studies showed that the NGR molecular scaffold/linker used for gold functionalization is critical for CD13 recognition. Using fibrosarcoma-bearing mice, NGR-tagged nanodrugs could deliver extremely low, yet pharmacologically active doses of tumor necrosis factor (TNF), an anticancer cytokine, to tumors with no evidence of toxicity. Mechanistic studies confirmed that CD13 targeting was a primary mechanism of drug delivery and excluded a major role of integrin targeting consequent to NGR deamidation, a degradation reaction that generates the isoAsp-Gly-Arg (isoDGR) integrin ligand. NGR-tagged gold nanoparticles can be used, in principle, as a novel platform for single- or multi-cytokine delivery to tumor endothelial cells for cancer therapy.

Keywords: gold nanoparticles, Asn-Gly-Arg (NGR), isoAsp-Gly-Arg (isoDGR), CD13, integrin, tumor necrosis factor, albumin

References(31)

1

Curnis, F.; Sacchi, A.; Corti, A. Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J. Clin. Invest. 2002, 110, 475-482.

2

Curnis, F.; Sacchi, A.; Borgna, L.; Magni, F.; Gasparri, A.; Corti, A. Enhancement of tumor necrosis factor α antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat. Biotechnol. 2000, 18, 1185-1190.

3

Curnis, F.; Gasparri, A.; Sacchi, A.; Cattaneo, A.; Magni, F.; Corti, A. Targeted delivery of IFNγ to tumor vessels uncouples antitumor from counterregulatory mechanisms. Cancer Res. 2005, 65, 2906-2913.

4

Curnis, F.; Gasparri, A.; Sacchi, A.; Longhi, R.; Corti, A. Coupling tumor necrosis factor-α with αV integrin ligands improves its antineoplastic activity. Cancer Res. 2004, 64, 565-571.

5

Gregorc, V.; Zucali, P. A.; Santoro, A.; Ceresoli, G. L.; Citterio, G.; De Pas, T. M.; Zilembo, N.; De Vincenzo, F.; Simonelli, M.; Rossoni, G. et al. Phase Ⅱ study of asparagine-glycine-arginine-human tumor necrosis factor α, a selective vascular targeting agent, in previously treated patients with malignant pleural mesothelioma. J. Clin. Oncol. 2010, 28, 2604-2611.

6

Gregorc, V.; Citterio, G.; Vitali, G.; Spreafico, A.; Scifo, P.; Borri, A.; Donadoni, G.; Rossoni, G.; Corti, A.; Caligaris-Cappio, F. et al. Defining the optimal biological dose of NGR-hTNF, a selective vascular targeting agent, in advanced solid tumours. Eur. J. Cancer 2010, 46, 198-206.

7

Corti, A.; Curnis, F.; Rossoni, G.; Marcucci, F.; Gregorc, V. Peptide-mediated targeting of cytokines to tumor vasculature: The NGR-hTNF example. BioDrugs 2013, 27, 591-603.

8

Giljohann, D. A.; Seferos, D. S.; Daniel, W. L.; Massich, M. D.; Patel, P. C.; Mirkin, C. A. Gold nanoparticles for biology and medicine. Angew. Chem. , Int. Ed. 2010, 49, 3280-3294.

9

Cai, W. B.; Gao, T.; Hong, H.; Sun, J. T. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 2008, 1, 17-32.

10

Paciotti, G. F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R. E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004, 11, 169-183.

11

Libutti, S. K.; Paciotti, G. F.; Byrnes, A. A.; Alexander, H. R., Jr.; Gannon, W. E.; Walker, M.; Seidel, G. D.; Yuldasheva, N.; Tamarkin, L. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nano medicine. Clin. Cancer Res. 2010, 16, 6139-6149.

12

Powell, A. C.; Paciotti, G. F.; Libutti, S. K. Colloidal gold: A novel nanoparticle for targeted cancer therapeutics. Methods Mol. Biol. 2010, 624, 375-384.

13

Meng, J.; Yan, Z.; Wu, J.; Li, L.; Xue, X.; Li, M.; Li, W.; Hao, Q.; Wan, Y.; Qin, X. et al. High-yield expression, purification and characterization of tumor-targeted IFN-α2a. Cytotherapy 2007, 9, 60-68.

14

Pasqualini, R.; Koivunen, E.; Kain, R.; Lahdenranta, J.; Sakamoto, M.; Stryhn, A.; Ashmun, R. A.; Shapiro, L. H.; Arap, W.; Ruoslahti, E. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000, 60, 722-727.

15

Curnis, F.; Arrigoni, G.; Sacchi, A.; Fischetti, L.; Arap, W.; Pasqualini, R.; Corti, A. Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res. 2002, 62, 867-874.

16

Di Matteo, P.; Arrigoni, G. L.; Alberici, L.; Corti, A.; Gallo-Stampino, C.; Traversari, C.; Doglioni, C.; Rizzardi, G. P. Enhanced expression of CD13 in vessels of inflammatory and neoplastic tissues. J. Histochem. Cytochem. 2011, 59, 47-59.

17

Curnis, F.; Longhi, R.; Crippa, L.; Cattaneo, A.; Dondossola, E.; Bachi, A.; Corti, A. Spontaneous formation of L-isoaspartate and gain of function in fibronectin. J. Biol. Chem. 2006, 281, 36466-36476.

18

Curnis, F.; Cattaneo, A.; Longhi, R.; Sacchi, A.; Gasparri, A. M.; Pastorino, F.; Di Matteo, P.; Traversari, C.; Bachi, A.; Ponzoni, M. et al. Critical role of flanking residues in NGR-to-isoDGR transition and CD13/integrin receptor switching. J. Biol. Chem. 2010, 285, 9114-9123.

19

Curnis, F.; Sacchi, A.; Gasparri, A.; Longhi, R.; Bachi, A.; Doglioni, C.; Bordignon, C.; Traversari, C.; Rizzardi, G. P.; Corti, A. Isoaspartate-glycine-arginine: A new tumor vasculature-targeting motif. Cancer Res. 2008, 68, 7073-7082.

20

Corti, A.; Curnis, F. Isoaspartate-dependent molecular switches for integrin-ligand recognition. J. Cell Sci. 2011, 124, 515-522.

21

Spitaleri, A.; Mari, S.; Curnis, F.; Traversari, C.; Longhi, R.; Bordignon, C.; Corti, A.; Rizzardi, G. P.; Musco, G. Structural basis for the interaction of isoDGR with the RGD-binding site of αvβ3 integrin. J. Biol. Chem. 2008, 283, 19757-19768.

22

Frank, A. O.; Otto, E.; Mas-Moruno, C.; Schiller, H. B.; Marinelli, L.; Cosconati, S.; Bochen, A.; Vossmeyer, D.; Zahn, G.; Stragies, R. et al. Conformational control of integrin-subtype selectivity in isoDGR peptide motifs: A biological switch. Angew. Chem. , Int. Ed. 2010, 49, 9278-9281.

23

Bochen, A.; Marelli, U. K.; Otto, E.; Pallarola, D.; Mas-Moruno, C.; Di Leva, F. S.; Boehm, H.; Spatz, J. P.; Novellino, E.; Kessler, H. et al. Biselectivity of isoDGR peptides for fibronectin binding integrin subtypes α5β1 and αvβ6: Conformational control through flanking amino acids. J. Med. Chem. 2013, 56, 1509-1519.

24

Curnis, F.; Sacchi, A.; Longhi, R.; Colombo, B.; Gasparri, A.; Corti, A. IsoDGR-tagged albumin: A new αvβ3 selective carrier for nanodrug delivery to tumors. Small 2013, 9, 673-678.

25

Curnis, F.; Corti, A. Production and characterization of recombinant human and murine TNF. Methods Mol. Med. 2004, 98, 9-22.

26

Dondossola, E.; Rangel, R.; Guzman-Rojas, L.; Barbu, E. M.; Hosoya, H.; St John, L. S.; Molldrem, J. J.; Corti, A.; Sidman, R. L.; Arap, W. et al. CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis. Proc. Natl. Acad. Sci. USA 2013, 110, 20717-20722.

27

Wong, A. H. M.; Zhou, D. X.; Rini, J. M. The X-ray crystal structure of human aminopeptidase N reveals a novel dimer and the basis for peptide processing. J. Biol. Chem. 2012, 287, 36804-36813.

28

Merlot, A. M.; Kalinowski, D. S.; Richardson, D. R. Unraveling the mysteries of serum albumin-more than just a serum protein. Front. Physiol. 2014, 5, 299.

29

Colombo, G.; Curnis, F.; De Mori, G. M. S.; Gasparri, A.; Longoni, C.; Sacchi, A.; Longhi, R.; Corti, A. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J. Biol. Chem. 2002, 277, 47891-47897.

30

Liu, C.; Yang, Y.; Chen, L.; Lin, Y. L.; Li, F. A unified mechanism for aminopeptidase N-based tumor cell motility and tumor-homing therapy. J. Biol. Chem. 2014, 289, 34520-34529.

31

Fields, G. B.; Noble, R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 1990, 35, 161-214.

File
nr-9-5-1393_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 October 2015
Revised: 26 January 2016
Accepted: 28 January 2016
Published: 29 September 2016
Issue date: May 2016

Copyright

© The author(s) 2016

Acknowledgements

Acknowledgements

This work was supported by grants from Worldwide Cancer Research (formerly known as AICR, GR: 14-0066), Ministero della Salute of Italy (No. RF-2011-02350836) and Associazione Italiana Ricerca sul Cancro (No. AIRC IG-14338 and 9965).

We thank the ProMiFa (Protein Microsequencing Facility) at San Raffaele Scientific Institute for mass spectrometry analyses.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return