Journal Home > Volume 9 , Issue 5

Herein, we fabricate hollow silica nanoparticles with exceptionally narrow size distributions that inherently possess two distinct length scales-tens of nanometers with regards to the shell thickness, and hundreds of nanometers in regards to the total diameter. We characterize these structures using dynamic and static light scattering (DLS and SLS), small angle X-ray scattering (SAXS), and transmission electron microscopy (TEM), and we demonstrate quantitative agreement among all methods. The ratio between the radius of gyration (SLS) and hydrodynamic radius (DLS) in these particles equals almost unity, corresponding to ideal capsule behavior. We are able to resolve up to 20 diffraction orders of the hollow sphere form factor in SAXS, indicating a narrow size distribution. Data from light and X-ray scattering can be combined to a master curve covering a q-range of four orders of magnitude assessing all hierarchical length scales of the form factor. The measured SLS intensity profiles noticeably change when the scattering contrast between the interior and exterior is altered, whereas the SAXS intensity profiles do not show any significant change. Tight control of the aforementioned length scales in one simple and robust colloidal building block renders these particles suitable as future calibration standards.

File
nr-9-5-1366_ESM.pdf (3.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 December 2015
Accepted: 25 January 2016
Published: 29 September 2016
Issue date: May 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The German Research Foundation (No. SFB840) funded this project. P. R. thanks the Elite Network Bavaria (ENB) and the University of Bayreuth Graduate School. We acknowledge Dr. Markus Drechsler for assistance with the cryo TEM measurements, Tobias Kemnitzer for XRD measurements, and Dr. Sabine Rosenfeldt for fruitful discussions.

Return