Journal Home > Volume 9 , Issue 5

Riboflavin (Rf) receptors bind and translocate Rf and its phosphorylated forms (e.g. flavin mononucleotide, FMN) into cells where they mediate various cellular metabolic pathways. Previously, we showed that FMN-coated ultrasmall superparamagnetic iron oxide (FLUSPIO) nanoparticles are suitable for labeling metabolically active cancer and endothelial cells in vitro. In this study, we focused on the in vivo application of FLUSPIO using prostate cancer xenografts. Size, charge, and chemical composition of FLUSPIO were evaluated. We explored the in vitro specificity of FLUSPIO for its cellular receptors using magnetic resonance imaging (MRI) and Prussian blue staining. Competitive binding experiments were performed in vivo by injecting free FMN in excess. Bio-distribution of FLUSPIO was determined by estimating iron content in organs and tumors using a colorimetric assay. AFM analysis and zeta potential measurements revealed a particulate morphology approximately 20–40 nm in size and a negative zeta potential (–24.23 ± 0.15 mV) in water. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry data confirmed FMN present on the USPIO nanoparticle surface. FLUSPIO uptake in prostate cancer cells and human umbilical vein endothelial cells was significantly higher than that of control USPIO, while addition of excess of free FMN reduced accumulation. Similarly, in vivo MRI and histology showed specific FLUSPIO uptake by prostate cancer cells, tumor endothelial cells, and tumor-associated macrophages. Besides prominent tumor accumulation, FLUSPIO accumulated in the liver, spleen, lung, and skin. Hence, our data strengthen our hypothesis that targeting riboflavin receptors is an efficient approach to accumulate nanomedicines in tumors opening perspectives for the development of diagnostic and therapeutic systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In vivo evaluation of riboflavin receptor targeted fluorescent USPIO in mice with prostate cancer xenografts

Show Author's information Jabadurai Jayapaul1,2,3( )Susanne Arns1Matt Bunker4,5Marek Weiler1Sandra Rutherford5Peter Comba2Fabian Kiessling1( )
Institute for Experimental Molecular ImagingRWTH Aachen UniversityPauwelsstrasse 30Aachen52074Germany
Anorganisch-Chemisches InstitutUniversität HeidelbergIm Neuenheimer Feld 270Heidelberg69120Germany
Molecular Imaging GroupDepartment of Structural BiologyLeibniz Institut für Molekulare Pharmakologie (FMP)Robert-Rössle-Str. 10Berlin13125Germany
AstraZeneca Pharmaceutical Development, Charter WayMacclesfield Cheshire SK10 2NA UK
Molecular Profiles Ltd. 8 Orchard Place, Nottingham Business Park Nottingham NG8 6PX UK

Abstract

Riboflavin (Rf) receptors bind and translocate Rf and its phosphorylated forms (e.g. flavin mononucleotide, FMN) into cells where they mediate various cellular metabolic pathways. Previously, we showed that FMN-coated ultrasmall superparamagnetic iron oxide (FLUSPIO) nanoparticles are suitable for labeling metabolically active cancer and endothelial cells in vitro. In this study, we focused on the in vivo application of FLUSPIO using prostate cancer xenografts. Size, charge, and chemical composition of FLUSPIO were evaluated. We explored the in vitro specificity of FLUSPIO for its cellular receptors using magnetic resonance imaging (MRI) and Prussian blue staining. Competitive binding experiments were performed in vivo by injecting free FMN in excess. Bio-distribution of FLUSPIO was determined by estimating iron content in organs and tumors using a colorimetric assay. AFM analysis and zeta potential measurements revealed a particulate morphology approximately 20–40 nm in size and a negative zeta potential (–24.23 ± 0.15 mV) in water. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry data confirmed FMN present on the USPIO nanoparticle surface. FLUSPIO uptake in prostate cancer cells and human umbilical vein endothelial cells was significantly higher than that of control USPIO, while addition of excess of free FMN reduced accumulation. Similarly, in vivo MRI and histology showed specific FLUSPIO uptake by prostate cancer cells, tumor endothelial cells, and tumor-associated macrophages. Besides prominent tumor accumulation, FLUSPIO accumulated in the liver, spleen, lung, and skin. Hence, our data strengthen our hypothesis that targeting riboflavin receptors is an efficient approach to accumulate nanomedicines in tumors opening perspectives for the development of diagnostic and therapeutic systems.

Keywords: magnetic resonance imaging, flavin mononucleotide, iron oxide nanoparticles, molecular imaging, riboflavin carrier protein, riboflavin transporters

References(35)

1

Mamede, A. C.; Tavares, S. D.; Abrantes, A. M.; Trindade, J.; Maia, J. M.; Botelho, M. F. The role of vitamins in cancer: A review. Nutr. Cancer 2011, 63, 479-494.

2

Russell-Jones, G.; McTavish, K.; McEwan, J.; Rice, J.; Nowotnik, D. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J. Inorg. Biochem. 2004, 98, 1625-1633.

3

Giancaspero, T. A.; Busco, G.; Panebianco, C.; Carmone, C.; Miccolis, A.; Liuzzi, G. M.; Colella, M.; Barile, M. FAD synthesis and degradation in the nucleus create a local flavin cofactor pool. J. Biol. Chem. 2013, 288, 29069-29080.

4

Becker, K.; Schirmer, M.; Kanzok, S.; Schirmer, R. H. Flavins and flavoenzymes in diagnosis and therapy. In Flavoprotein Protocols; Chapman, S. K.; Reid, G. A., Eds.; Humana Press: Totowa, N.J., 1999; pp 229-245.

5

Rao, P. N.; Levine, E.; Myers, M. O.; Prakash, V.; Watson, J.; Stolier, A.; Kopicko, J. J.; Kissinger, P.; Raj, S. G.; Raj, M. H. Elevation of serum riboflavin carrier protein in breast cancer. Cancer Epidemiol. Biomarkers Prev. 1999, 8, 985-990.

6

Bareford, L. M.; Swaan, P. W. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev. 2007, 59, 748-758.

7

Bareford, L. M.; Avaritt, B. R.; Ghandehari, H.; Nan, A.; Swaan, P. W. Riboflavin-targeted polymer conjugates for breast tumor delivery. Pharm. Res. 2013, 30, 1799-1812.

8

Huang, S. N.; Phelps, M. A.; Swaan, P. W. Involvement of endocytic organelles in the subcellular trafficking and localization of riboflavin. J. Pharmacol. Exp. Ther. 2003, 306, 681-687.

9

Pedrolli, D. B.; Jankowitsch, F.; Schwarz, J.; Langer, S.; Nakanishi, S.; Frei, E.; Mack, M. Riboflavin analogs as antiinfectives: Occurrence, mode of action, metabolism and resistance. Curr. Pharm. Des. 2013, 19, 2552-2560.

10

Chen, C.; Ke, J. Y.; Zhou, X. E.; Yi, W.; Brunzelle, J. S.; Li, J.; Yong, E. L.; Xu, H. E.; Melcher, K. Structural basis for molecular recognition of folic acid by folate receptors. Nature 2013, 500, 486-489.

11

Wang, S. S.; Low, P. S. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Release 1998, 53, 39-48.

12

Bae, Y.; Jang, W. D.; Nishiyama, N.; Fukushima, S.; Kataoka, K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst. 2005, 1, 242-250.

13

D'Souza, V. M.; Foraker, A. B.; Free, R. B.; Ray, A.; Shapiro, P. S.; Swaan, P. W. cAMP-coupled riboflavin trafficking in placental trophoblasts: A dynamic and ordered process. Biochemistry 2006, 45, 6095-6104.

14

Barile, M.; Giancaspero, T. A.; Brizio, C.; Panebianco, C.; Indiveri, C.; Galluccio, M.; Vergani, L.; Eberini, I.; Gianazza, E. Biosynthesis of flavin cofactors in man: Implications in health and disease. Curr. Pharm. Des. 2013, 19, 2649-2675.

15

Johnson, T.; Ouhtit, A.; Gaur, R.; Fernando, A.; Schwarzenberger, P.; Su, J.; Ismail, M. F.; El-Sayyad, H. I.; Karande, A.; Elmageed, Z. A. et al. Biochemical characterization of riboflavin carrier protein (RCP) in prostate cancer. Front. Biosci. (Landmark Ed.) 2009, 14, 3634-3640.

16

Bareford, L. M.; Phelps, M. A.; Foraker, A. B.; Swaan, P. W. Intracellular processing of riboflavin in human breast cancer cells. Mol. Pharm. 2008, 5, 839-848.

17

Jayapaul, J.; Hodenius, M.; Arns, S.; Lederle, W.; Lammers, T.; Comba, P.; Kiessling, F.; Gaetjens, J. FMN-coated fluorescent iron oxide nanoparticles for RCP-mediated targeting and labeling of metabolically active cancer and endothelial cells. Biomaterials 2011, 32, 5863-5871.

18

Jayapaul, J.; Arns, S.; Lederle, W.; Lammers, T.; Comba, P.; Gätjens, J.; Kiessling, F. Riboflavin carrier protein-targeted fluorescent USPIO for the assessment of vascular metabolism in tumors. Biomaterials 2012, 33, 8822-8829.

19

Jander, G.; Jahr, K. -F. Massanalyse. 17 ed.; 2009.

20

Bashir, W. A. Photometric determination of iron (Ⅲ). Microchem. J. 1981, 26, 477-480.

21

Pillarsetty, N.; Punzalan, B.; Larson, S. M. 2-18F-Fluoropropionic acid as a PET imaging agent for prostate cancer. J. Nucl. Med. 2009, 50, 1709-1714.

22

Jansch, M.; Stumpf, P.; Graf, C.; Rühl, E.; Müller, R. H. Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int. J. Pharm. 2012, 428, 125-133.

23

Mahmoudi, M.; Lynch, I.; Ejtehadi, M. R.; Monopoli, M. P.; Bombelli, F. B.; Laurent, S. Protein−nanoparticle interactions: Opportunities and challenges. Chem. Rev. 2011, 111, 5610-5637.

24

Memarpoor-Yazdi, M.; Mahaki, H. Probing the interaction of human serum albumin with vitamin B2 (riboflavin) and l-arginine (l-Arg) using multi-spectroscopic, molecular modeling and zeta potential techniques. J. Lumin. 2013, 136, 150-159.

25

Mason, C. W.; D'Souza, V. M.; Bareford, L. M.; Phelps, M. A.; Ray, A.; Swaan, P. W. Recognition, cointernalization, and recycling of an avian riboflavin carrier protein in human placental trophoblasts. J. Pharmacol. Exp. Ther. 2006, 317, 465-472.

26

Innis, W. S. A.; McCormick, D. B.; Merrill, A. H., Jr. Variations in riboflavin binding by human plasma: Identification of immunoglobulins as the major proteins responsible. Biochem. Med. 1985, 34, 151-165.

27

Mertens, M. E.; Frese, J.; Bölükbas, D. A.; Hrdlicka, L.; Golombek, S.; Koch, S.; Mela, P.; Jockenhövel, S.; Kiessling, F.; Lammers, T. FMN-coated fluorescent USPIO for cell labeling and non-invasive MR imaging in tissue engineering. Theranostics 2014, 4, 1002-1013.

28

Paik, J. -Y.; Lee, K. -H.; Ko, B. -H.; Choe, Y. S.; Choi, Y.; Kim, B. -T. Nitric oxide stimulates 18F-FDG uptake in human endothelial cells through increased hexokinase activity and GLUT1 expression. J. Nucl. Med. 2005, 46, 365-370.

29

Yonezawa, A.; Masuda, S.; Katsura, T.; Inui, K. -I. Identification and functional characterization of a novel human and rat riboflavin transporter, RFT1. Am. J. Physiol. Cell Physiol. 2008, 295, C632-C641.

30

Yamamoto, S.; Inoue, K.; Ohta, K. -Y.; Fukatsu, R.; Maeda, J. -Y.; Yoshida, Y.; Yuasa, H. Identification and functional characterization of rat riboflavin transporter 2. J. Biochem. 2009, 145, 437-443.

31

Subramanian, V. S.; Subramanya, S. B.; Rapp, L.; Marchant, J. S.; Ma, T. Y.; Said, H. M. Differential expression of human riboflavin transporters -1, -2, and -3 in polarized epithelia: A key role for hRFT-2 in intestinal riboflavin uptake. Biochim. Biophys. Acta 2011, 1808, 3016-3021.

32

Yao, Y.; Yonezawa, A.; Yoshimatsu, H.; Masuda, S.; Katsura, T.; Inui, K. -I. Identification and comparative functional characterization of a new human riboflavin transporter hRFT3 expressed in the brain. J. Nutr. 2010, 140, 1220-1226.

33

Shanehsazzadeh, S.; Oghabian, M. A.; Daha, F. J.; Amanlou, M.; Allen, B. J. Biodistribution of ultra small superparamagnetic iron oxide nanoparticles in BALB mice. J. Radioanal. Nucl. Chem. 2013, 295, 1517-1523.

34

Shanehsazzadeh, S.; Oghabian, M. A.; Allen, B. J.; Amanlou, M.; Masoudi, A.; Daha, F. J. Evaluating the effect of ultrasmall superparamagnetic iron oxide nanoparticles for a long-term magnetic cell labeling. J. Med. Phys. 2013, 38, 34-40.

35

Foraker, A. B.; Khantwal, C. M.; Swaan, P. W. Current perspectives on the cellular uptake and trafficking of riboflavin. Adv. Drug Deliv. Rev. 2003, 55, 1467-1483.

File
nr-9-5-1319_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 October 2015
Revised: 21 January 2016
Accepted: 24 January 2016
Published: 29 September 2016
Issue date: May 2016

Copyright

© The author(s) 2016

Acknowledgements

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) grant KI 1072/1-3 "Dual modal contrast agents for MRI and optical imaging techniques" by the Helmholtz-Society Portfolio grant "Technologie und Medizin – Multimodale Bildgebung zur Aufklärung des In-vivo-Verhaltens von polymeren Biomaterialien". The authors would like to thank Mr. Yang Shi, department of pharmaceutical science, Universiteit Utrecht, The Netherlands for performing zeta potential measurements and Dr. David Scurr, School of Pharmacy, University of Nottingham, UK for carrying out TOF-SIMS measurements. The authors would like to thank Prof. Dr. Twan Lammers for reading the manuscript.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Return