Journal Home > Volume 9 , Issue 2

The ability to controlled introduction of defects, particularly twin defects in Pt-based nanocrystals (NCs) provides a possibility to regulate the performance of Pt-based nanocatalyst. However, because of the high internal strain energy existed in twinned structures, the fabrication of defects in Pt-based NCs is sufficiently challenging. Here we demonstrate a "low-temperature interface-induced assembly" approach that provides precise control over Pt–Cu nanoparticles assembled at the hexadecylamine/water interface, yielding onion-like Pt–Cu NCs exposed a high density of twin defects. Moreover, a bending mechanism is proposed to elucidate the appearance of twin defects and lattice expanding (contraction) based on aberration corrected scanning transmission electron microscopy analysis. This work opens new routes to engineer defects in metalbased alloy NCs, enabling more opportunities in catalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interface-induced formation of onion-like alloy nanocrystals by defects engineering

Show Author's information Wei Jia1Yuen Wu1,2Yifeng Chen1Dongsheng He2Jinpeng Li1Yu Wang1Zhuo Wang1Wei Zhu1Chen Chen1Qing Peng1Dingsheng Wang1( )Yadong Li1
Department of Chemistry and Collaborative Innovation Center for Nanomaterial Science and EngineeringTsinghua UniversityBeijing100084China
Center of Advanced NanocatalysisUniversity of Science and Technology of China (CAN-USTC)Hefei230026China

Abstract

The ability to controlled introduction of defects, particularly twin defects in Pt-based nanocrystals (NCs) provides a possibility to regulate the performance of Pt-based nanocatalyst. However, because of the high internal strain energy existed in twinned structures, the fabrication of defects in Pt-based NCs is sufficiently challenging. Here we demonstrate a "low-temperature interface-induced assembly" approach that provides precise control over Pt–Cu nanoparticles assembled at the hexadecylamine/water interface, yielding onion-like Pt–Cu NCs exposed a high density of twin defects. Moreover, a bending mechanism is proposed to elucidate the appearance of twin defects and lattice expanding (contraction) based on aberration corrected scanning transmission electron microscopy analysis. This work opens new routes to engineer defects in metalbased alloy NCs, enabling more opportunities in catalysis.

Keywords: interface, assembly, alloy nanocrystals, electroxidation, twin defects

References(34)

1

Xu, Y.; Zhang, B. Recent advances in porous Pt-based nanostructures: Synthesis and electrochemical applications. Chem. Soc. Rev. 2014, 43, 2439-2450.

2

Jung, N.; Chung, D. Y.; Ryu, J.; Yoo, S. J.; Sung, Y. -E. Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 2014, 9, 433-456.

3

Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

4

Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848-1857.

5

Porter, N. S.; Wu, H.; Quan, Z. W.; Fang, J. Y. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc. Chem. Res. 2013, 46, 1867-1877.

6

Zhang, H.; Jin, M. S.; Xia, Y. N. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem. Soc. Rev. 2012, 41, 8035-8049.

7

Chen, A. C.; Holt-Hindle, P. Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 2010, 110, 3767-3804.

8

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-735.

9

Wu, Y.; Cai, S. F.; Wang, D. S.; He, W.; Li, Y. D. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt–Ni nanocrystals and their structure–activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975-8981.

10

Jia, Y. Y.; Jiang, Y. Q.; Zhang, J. W.; Zhang, L.; Chen, Q. L.; Xie, Z. X.; Zheng, L. S. Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J. Am. Chem. Soc. 2014, 136, 3748-3751.

11

Wu, Y.; Wang, D. S.; Chen, X. B.; Zhou, G.; Yu, R.; Li, Y. D. Defect-dominated shape recovery of nanocrystals: A new strategy for trimetallic catalysts. J. Am. Chem. Soc. 2013, 135, 12220-12223.

12

Wu, J. B.; Qi, L.; You, H. J.; Gross, A.; Li, J.; Yang, H. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J. Am. Chem. Soc. 2012, 134, 11880-11883.

13

Zhu, W.; Yin, A. -X.; Zhang, Y. -W.; Yan, C. -H. Highly shape-selective synthesis of monodispersed fivefold twinned platinum nanodecahedrons and nanoicosahedrons. Chem. -Eur. J. 2012, 18, 12222-12226.

14

Yoon, J.; Khi, N. T.; Kim, H.; Kim, B.; Baik, H.; Back, S.; Lee, S.; Lee, S. -W.; Kwon, S. J.; Lee, K. High yield synthesis of catalytically active five-fold twinned Pt nanorods from a surfactant-ligated precursor. Chem. Commun. 2013, 49, 573-575.

15

Wang, J. X.; Ma, C.; Choi, Y. M.; Su, D.; Zhu, Y. M.; Liu, P.; Si, R.; Vukmirovic, M. B.; Zhang, Y.; Adzic, R. R. Kirkendall effect and lattice contraction in nanocatalysts: A new strategy to enhance sustainable activity. J. Am. Chem. Soc. 2011, 133, 13551-13557.

16

Sun, X. H.; Jiang, K. Z.; Zhang, N.; Guo, S. J.; Huang, X. Q. Crystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic properties. ACS Nano 2015, 9, 7634-7640.

17

Zhang, S.; Zhang, X.; Jiang, G. M.; Zhu, H. Y.; Guo, S. J.; Su, D.; Lu, G.; Sun, S. H. Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 2014, 136, 7734-7739.

18

Wang, L. B.; Zhao, S. T.; Liu, C. X.; Li, C.; Li, X.; Li, H. L.; Wang, Y. C.; Ma, C.; Li, Z. Y.; Zeng, J. Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals. Nano Lett. 2015, 15, 2875-2880.

19

Zhou, W.; Wu, J. B.; Yang, H. Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. Nano Lett. 2013, 13, 2870-2874.

20

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60-103.

21

Niu, Z. Q.; Li, Y. D. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72-83.

22

Wu, J. B.; Zhang, J. L.; Peng, Z. M.; Yang, S. C.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984-4985.

23

Israelachvili, J. N. 20-soft and biological structures. In Intermolecular and Surface Forces, 3rd ed.; Israelachvili, J. N., Ed.; Academic Press: San Diego, 2011; pp 535-576.

24

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934-13937.

25

Ding, J. B.; Zhu, X.; Bu, L. Z.; Yao, J. L.; Guo, J.; Guo, S. J.; Huang, X. Q. Highly open rhombic dodecahedral PtCu nanoframes. Chem. Commun. 2015, 51, 9722-9725.

26

Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of PtCu nanowires with enhanced electrocatalytic activity. Nano Res. 2015, 8, 2308-2316.

27

Nosheen, F.; Zhang, Z. C.; Xiang, G. L.; Xu, B.; Yang, Y.; Saleem, F.; Xu, X. B.; Zhang, J. C.; Wang, X. Three-dimensional hierarchical Pt–Cu superstructures. Nano Res. 2015, 8, 832-838.

28

Israelachvili, J. N. 19-thermodynamic principles of self-assembly. In Intermolecular and Surface Forces, 3rd ed.; Israelachvili, J. N., Ed.; Academic Press: San Diego, 2011; pp 503-534.

29

Xu, C. W.; Cheng, L. Q.; Shen, P. K.; Liu, Y. L. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun. 2007, 9, 997-1001.

30

Mu, Y. Y.; Liang, H. P.; Hu, J. S.; Jiang, L.; Wan, L. J. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J. Phys. Chem. B 2005, 109, 22212-22216.

31

Guo, S. J.; Fang, Y. X.; Dong, S. J.; Wang, E. K. High-efficiency and low-cost hybrid nanomaterial as enhancing electrocatalyst: Spongelike Au/Pt core/shell nanomaterial with hollow cavity. J. Phys. Chem. C 2007, 111, 17104-17109.

32

Park, K. -W.; Choi, J. -H.; Kwon, B. -K.; Lee, S. -A.; Sung, Y. -E.; Ha, H. -Y.; Hong, S. -A.; Kim, H.; Wieckowski, A. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 2002, 106, 1869-1877.

33

Yin, Z.; Zhou, W.; Gao, Y. J.; Ma, D.; Kiely, C. J.; Bao, X. H. Supported Pd–Cu bimetallic nanoparticles that have high activity for the electrochemical oxidation of methanol. Chem. -Eur. J. 2012, 18, 4887-4893.

34

Debauge, Y.; Abon, M.; Bertolini, J. C.; Massardier, J.; Rochefort, A. Synergistic alloying behaviour of Pd50Cu50 single crystals upon adsorption and co-adsorption of CO and NO. Appl. Surf. Sci. 1995, 90, 15-27.

File
nr-9-2-584_ESM.pdf (6.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 December 2015
Revised: 02 January 2016
Accepted: 03 January 2016
Published: 14 January 2016
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

The authors wish to thank Mr. Chao Yang for valuable advices. This work was supported by the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (No. 201321), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130002120013), and the National Natural Science Foundation of China (Nos. 21521091, 21131004, 21390393, 21322107, 21325101, 21471089, and U1463202).

Return