Journal Home > Volume 9 , Issue 1

The large negative permittivity of noble metals in the infrared region prevents the possibility of highly confined plasmons in simple waveguide structures such as thin films or rods. This is a critical obstacle to applications of nonlinear plasmonics in the telecommunication wavelength region. We theoretically propose and numerically demonstrate that such limitation can be overcome by exploiting inter-element coupling effects in a plasmonic waveguide array. The supermodes of a plasmonic array span a large range of effective indices, making these structures ideal for broadband mode-multiplexed interconnects for integrated photonic devices. We show such plasmonic waveguide arrays can significantly enhance nonlinear optical interactions when operating in a high-index, tightly bound supermode. For example, a third-order nonlinear coefficient in such a waveguide can be more than three orders of magnitude larger compared to silicon waveguides of similar dimensions. These findings open new design possibilities towards the application of plasmonics in integrated optical devices in the telecommunications spectral region.


menu
Abstract
Full text
Outline
About this article

Nonlinear infrared plasmonic waveguide arrays

Show Author's information Alessandro Salandrino1,Yuan Wang1Xiang Zhang1,2( )
NSF Nanoscale Science and Engineering Center (NSEC)University of CaliforniaBerkeleyCA94720USA
Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA

Present address: EECS Department, University of Kansas, Lawrence, KS 66045, USA

Abstract

The large negative permittivity of noble metals in the infrared region prevents the possibility of highly confined plasmons in simple waveguide structures such as thin films or rods. This is a critical obstacle to applications of nonlinear plasmonics in the telecommunication wavelength region. We theoretically propose and numerically demonstrate that such limitation can be overcome by exploiting inter-element coupling effects in a plasmonic waveguide array. The supermodes of a plasmonic array span a large range of effective indices, making these structures ideal for broadband mode-multiplexed interconnects for integrated photonic devices. We show such plasmonic waveguide arrays can significantly enhance nonlinear optical interactions when operating in a high-index, tightly bound supermode. For example, a third-order nonlinear coefficient in such a waveguide can be more than three orders of magnitude larger compared to silicon waveguides of similar dimensions. These findings open new design possibilities towards the application of plasmonics in integrated optical devices in the telecommunications spectral region.

Keywords: infrared plasmonics, plasmonic waveguides, nonlinear plasmonics, waveguide theory, waveguide arrays

References(24)

1

Oulton, R. F.; Sorger, V. J.; Genov, D. A.; Pile, D. F. P.; Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2008, 2, 496–500.

2

Sorger, V. J.; Ye, Z. L.; Oulton, R. F.; Wang, Y.; Bartal, G.; Yin, X. B.; Zhang, X. Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat. Commun. 2011, 2, 331.

3

Mrejen, M.; Suchowski, H.; Hatakeyama, T.; Wu, C.; Feng, L.; O'Brien, K.; Wang, Y.; Zhang, X. Adiabatic eliminationbased coupling control in densely packed subwavelength waveguides. Nat. Commun. 2015, 6, 7565.

4

Johnson, P. B.; Christy, R. -W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

5

West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photon. Rev. 2010, 4, 795–808.

6

Naik, G. V.; Kim, J.; Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range ai][Invited]. Opt. Mater. Express 2011, 1, 1090–1099.

7

Emani, N. K.; Chung, T. -F.; Ni, X. J.; Kildishev, A. V.; Chen, Y. P.; Boltasseva, A. Electrically tunable damping of plasmonic resonances with graphene. Nano Lett. 2012, 12, 5202–5206.

8

Naik, G. V.; Shalaev, V. M.; Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 2013, 25, 3264–3294.

9

Pendry, J. B.; Martín-Moreno, L.; Garcia-Vidal, F. J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848.

10

Hibbins, A. P.; Evans, B. R.; Sambles, J. R. Experimental verification of designer surface plasmons. Science 2005, 308, 670–672.

11

Maier, S. A.; Andrews, S. R.; Martín-Moreno, L.; García- Vidal, F. J. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 2006, 97, 176805.

12

Yariv, A. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Elect. 1973, 9, 919–933.

13

Rudnick, J.; Stern, E. A. Second-harmonic radiation from metal surfaces. Phys. Rev. B 1971, 4, 4274–4290.

14

Ciraci, C.; Poutrina, E.; Scalora, M.; Smith, D. R. Secondharmonic generation in metallic nanoparticles: Clarification of the role of the surface. Phys. Rev. B 2012, 86, 115451.

15

Kauranen, M.; Zayats, A. V. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748.

16

O'Brien, K.; Suchowski, H.; Rho, J.; Salandrino, A.; Kante, B.; Yin, X. B.; Zhang, X. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater. 2015, 14, 379–383.

17

Yariv, A. Quantum Electronics, 3rd ed.; John WieLy & Sons: New York, 1989; pp 389.

18

Economou, E. N. Surface plasmons in thin films. Phys. Rev. 1969, 182, 539–554.

19

Shen, J. -T.; Catrysse, P. B.; Fan, S. H. Mechanism for designing metallic metamaterials with a high index of refraction. Phys. Rev. Lett. 2005, 94, 197401.

20

Orlov, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Complex band structure of nanostructured metal-dielectric metamaterials. Opt. Express 2013, 21, 1593–1598.

21

Yao, J.; Yang, X. D.; Yin, X. B.; Bartal, G.; Zhang, X. Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc. Natl. Acad. Sci. USA 2011, 108, 11327–11331.

22

Afshar V, S.; Monro, T. M. A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity. Opt. Express 2009, 17, 2298–2318.

23

De Leon, I.; Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 2010, 4, 382–387.

24

Berini, P.; De Leon, I. Surface plasmon-polariton amplifiers and lasers. Nat. Photonics 2012, 6, 16–24.

Publication history
Copyright
Acknowledgements

Publication history

Received: 25 November 2015
Revised: 23 December 2015
Accepted: 28 December 2015
Published: 09 January 2016
Issue date: January 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016

Acknowledgements

Acknowledgements

This work was supported by U.S. Air Force Office of Scientific Research (AFOSR) MURI program (No. FA9550-12-1-0024).

Return