Journal Home > Volume 9 , Issue 2

The electron–hole exchange interaction significantly influences the optical properties of excitons and radiative decay. However, exciton dynamics in luminescent carbon dots (Cdots) is still not clear. In this study, we have developed a simple and efficient one-step strategy to synthesize luminescent Cdots using the pyrolysis of oleylamine. The sp2 clusters of a few aromatic rings are responsible for the observed blue photoluminescence. The size of these clusters can be tuned by controlling the reaction time, and the energy gap between the ππ* states of the sp2 domains decreases as the sp2 cluster size increases. More importantly, the strong electron–hole exchange interaction results in the splitting of the exciton states of the sp2 clusters into the singlet-bright and triplet-dark states with an energy difference ΔE, which decreases with increasing sp2 cluster size owing to the reduction of the confinement energy and the suppression of the electron–hole exchange interaction.


menu
Abstract
Full text
Outline
About this article

Exciton dynamics in luminescent carbon nanodots: Electron–hole exchange interaction

Show Author's information Bo Peng1,( )Xin Lu1Shi Chen1Cheng Hon Alfred Huan1Qihua Xiong1,2( )Evren Mutlugun3Hilmi Volkan Demir3Siu Fung Yu4
Division of Physics and Applied PhysicsSchool of Physical and Mathematical SciencesNanyang Technological UniversitySingapore637371Singapore
NOVITASNanoelectronics Centre of ExcellenceSchool of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
LUMINOUSCentre of Excellence for Semiconductor Lighting and DisplaysSchool of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
Department of Applied Physicsthe Hong Kong Polytechnic UniversityHong Hum, Hong Kong SARChina

Present address: National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, No.4, Block 2, North Jianshe Road, Chengdu 610054, China

Abstract

The electron–hole exchange interaction significantly influences the optical properties of excitons and radiative decay. However, exciton dynamics in luminescent carbon dots (Cdots) is still not clear. In this study, we have developed a simple and efficient one-step strategy to synthesize luminescent Cdots using the pyrolysis of oleylamine. The sp2 clusters of a few aromatic rings are responsible for the observed blue photoluminescence. The size of these clusters can be tuned by controlling the reaction time, and the energy gap between the ππ* states of the sp2 domains decreases as the sp2 cluster size increases. More importantly, the strong electron–hole exchange interaction results in the splitting of the exciton states of the sp2 clusters into the singlet-bright and triplet-dark states with an energy difference ΔE, which decreases with increasing sp2 cluster size owing to the reduction of the confinement energy and the suppression of the electron–hole exchange interaction.

Keywords: pyrolysis, photoluminescence, carbon dots, electron–hole exchange interaction, energy splitting

References(51)

1

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726-6744.

2

Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230-24253.

3

Pan, J.; Utama, M. I. B.; Zhang, Q.; Liu, X. F.; Peng, B.; Wong, L. M.; Sum, T. C.; Wang, S. J.; Xiong, Q. H. Composition-tunable vertically aligned CdSxSe1-x nanowire arrays via van der waals epitaxy: Investigation of optical properties and photocatalytic behavior. Adv. Mater. 2012, 24, 4151-4156.

4

Loh, K. P.; Bao, Q. L.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2, 1015-1024.

5

Wang, J.; Wang, C. F.; Chen, S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Chem., Int. Ed. 2012, 51, 9297-9301.

6

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736-12737.

7

Zhang, W. F.; Zhu, H.; Yu, S. F.; Yang, H. Y. Observation of lasing emission from carbon nanodots in organic solvents. Adv. Mater. 2012, 24, 2263-2267.

8

Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. -T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430-4434.

9

Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734-738.

10

Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem., Int. Ed. 2007, 46, 6473-6475.

11

Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X. J.; Chen, S. W. Nanosized carbon particles from natural gas soot. Chem. Mater. 2009, 21, 2803-2809.

12

Wang, X. H.; Qu, K. G.; Xu, B. L.; Ren, J. S.; Qu, X. G. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents. J. Mater. Chem. 2011, 21, 2445-2450.

13

Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, C.; Yan, X. M.; Wu, M. H. Observation of pH-, solvent-, spin-, and excitation-dependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 2010, 46, 3681-3683.

14

Xie, Z.; Wang, F.; Liu, C. Y. Organic-inorganic hybrid functional carbon dot gel glasses. Adv. Mater. 2012, 24, 1716-1721.

15

Wang, F.; Pang, S. P.; Wang, L.; Li, Q.; Kreiter, M.; Liu, C. Y. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem. Mater. 2010, 22, 4528-4530.

16

Ju, S. -Y.; Kopcha, W. P.; Papadimitrakopoulos, F. Brightly fluorescent single-walled carbon nanotubes via an oxygen-excluding surfactant organization. Science 2009, 323, 1319-1323.

17

Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Surface functionalized carbogenic quantum dots. Small 2008, 4, 455-458.

18

Zhou, J. G.; Booker, C.; Li, R. Y.; Zhou, X. T.; Sham, T. -K.; Sun, X. L.; Ding, Z. F. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 2007, 129, 744-745.

19

Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C. W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 2010, 22, 505-509.

20

Luo, Z. T.; Lu, Y.; Somers, L. A.; Johnson, A. T. C. High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 2009, 131, 898-899.

21

Wang, F.; Xie, Z.; Zhang, H.; Liu, C. Y.; Zhang, Y. G. Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 2011, 21, 1027-1031.

22

Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756-7757.

23

Wu, H. B.; Chen, W. Synthesis and reaction temperature-tailored self-assembly of copper sulfide nanoplates. Nanoscale 2011, 3, 5096-5102.

24

Cattley, C. A.; Stavrinadis, A.; Beal, R.; Moghal, J.; Cook, A. G.; Grant, P. S.; Smith, J. M.; Assender, H.; Watt, A. A. R. Colloidal synthesis of lead oxide nanocrystals for photovoltaics. Chem. Commun. 2010, 46, 2802-2804.

25

Hou, X. M.; Zhang, X. L.; Yang, W.; Liu, Y.; Zhai, X. M. Synthesis of SERS active Ag2S nanocrystals using oleylamine as solvent, reducing agent and stabilizer. Mater. Res. Bull. 2012, 47, 2579-2583.

26

Hu, S. -L.; Niu, K. -Y.; Sun, J.; Yang, J.; Zhao, N. -Q.; Du, X. -W. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 2009, 19, 484-488.

27

Kisner, A. Ultrathin Gold Nanowires: Chemistry, Electrical Characterization and Application to Sense Cellular Biology; Forschungszentrum Jülich, Zentralbibliothek: Jülich, 2012.

28

Gericke, A.; Huhnerfuss, H. Infrared spectroscopic comparison of enantiomeric and racemic N-octadecanoylserine methyl ester monolayers at the air/water interface. Langmuir 1994, 10, 3782-3786.

29

Wang, Y.; Alsmeyer, D. C.; Mccreery, R. L. Raman-spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1990, 2, 557-563.

30

Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A. L.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 3, 2367-2375.

31

Ray, S. C.; Saha, A.; Jana, N. R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C. 2009, 113, 18546-18551.

32

Tommasini, M.; Castiglioni, C.; Zerbi, G. Raman scattering of molecular graphenes. Phys Chem. Chem. Phys. 2009, 11, 10185-10194.

33

Haerle, R.; Riedo, E.; Pasquarello, A.; Baldereschi, A. sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Phys. Rev. B 2001, 65, 045101.

34

Yumitori, S. Correlation of C1s chemical state intensities with the O1s intensity in the XPS analysis of anodically oxidized glass-like carbon samples. J. Mater. Sci. 2000, 35, 139-146.

35

Yu, X. L.; Tong, S. R.; Ge, M. F.; Wu, L. Y.; Zuo, J. C.; Cao, C. Y.; Song, W. G. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J. Environ. Sci. 2013, 25, 933-943.

36

Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. Jr. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145-152.

37

Chen, J. P.; Yang, L. Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis. Langmuir 2006, 22, 8906-8914.

38

Sk, M. P.; Jaiswal, A.; Paul, A.; Ghosh, S. S.; Chattopadhyay, A. Presence of amorphous carbon nanoparticles in food caramels. Sci. Rep. 2012, 2, 383.

39

Taylor, P. R. On the origins of the blue shift of the carbonyl n-π* transition in hydrogen-bonding solvents. J. Am. Chem. Soc. 1982, 104, 5248-5249.

40

Nizamoglu, S.; Demir, H. V. Excitation resolved color conversion of CdSe/ZnS core/shell quantum dot solids for hybrid white light emitting diodes. J. Appl. Phys. 2009, 105, 083112.

41

Peng, B.; Li, Z. P.; Mutlugun, E.; Hernández Martínez, P. L.; Li, D. H.; Zhang, Q.; Gao, Y.; Demir, H. V.; Xiong, Q. H. Quantum dots on vertically aligned gold nanorod monolayer: Plasmon enhanced fluorescence. Nanoscale 2014, 6, 5592-5598.

42

Peng, B.; Li, G. Y.; Li, D. H.; Dodson, S.; Zhang, Q.; Zhang, J.; Lee, Y. H.; Demir, H. V.; Ling, X. Y.; Xiong, Q. H. Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants. ACS Nano 2013, 7, 5993-6000.

43

Peng, B.; Zhang, Q.; Liu, X. F.; Ji, Y.; Demir, H. V.; Huan, C. H. A.; Sum, T. C.; Xiong, Q. H. Fluorophore-doped core-multishell spherical plasmonic nanocavities: Resonant energy transfer toward a loss compensation. ACS Nano 2012, 6, 6250-6259.

44

Zhang, Q.; Liu, X. F.; Utama, M. I. B.; Zhang, J.; de la Mata, M.; Arbiol, J.; Lu, Y. H.; Sum, T. C.; Xiong, Q. H. Highly enhanced exciton recombination rate by strong electron-phonon coupling in single ZnTe nanobelt. Nano Lett. 2012, 12, 6420-6427.

45

Labeau, O.; Tamarat, P.; Lounis, B. Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots. Phys. Rev. Lett. 2003, 90, 257404.

46

Brovelli, S.; Schaller, R. D.; Crooker, S. A.; García-Santamaría, F.; Chen, Y.; Viswanatha, R.; Hollingsworth, J. A.; Htoon, H.; Klimov, V. I. Nano-engineered electron-hole exchange interaction controls exciton dynamics in core-shell semiconductor nanocrystals. Nat. Commun. 2011, 2, 280.

47

Matsuda, K. Novel excitonic properties of carbon nanotube studied by advanced optical spectroscopy. In Progress in Nanophotonics 2; Ohtsu, M., Ed.; Springer: Berlin Heidelberg, 2013; pp 33-70.

48

de Mello Donegá, C.; Bode, M.; Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 2006, 74, 085320.

49

Brongersma, M. L.; Kik, P. G.; Polman, A.; Min, K. S.; Atwater, H. A. Size-dependent electron-hole exchange interaction in Si nanocrystals. Appl. Phys. Lett. 2000, 76, 351-353.

50

Crooker, S. A.; Barrick, T.; Hollingsworth, J. A.; Klimov, V. I. Multiple temperature regimes of radiative decay in CdSe nanocrystal quantum dots: Intrinsic limits to the dark-exciton lifetime. Appl. Phys. Lett. 2003, 82, 2793-2795.

51

Matsunaga, R.; Matsuda, K.; Kanemitsu, Y. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy. Phys. Rev. Lett. 2011, 106, 037404.

Publication history
Copyright
Acknowledgements

Publication history

Received: 22 July 2015
Revised: 29 October 2015
Accepted: 30 October 2015
Published: 11 December 2015
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

Q. H. X. gratefully thanks the strong support from Singapore National Research Foundation through a Competitive Research Program (No. NRF-CRP-6-2010-2), and Singapore Ministry of Education via two Tier2 grants (Nos. MOE2011-T2-2-051 and MOE2011-T2-2-085) and a Tier1 grant (No. 2013-T1-002-232).

Return