Journal Home > Volume 9 , Issue 2

We studied the oxygen etching of individual single-walled carbon nanotubes on silicon oxide substrates using atomic force microscopy and high-temperature environmental scanning electron microscopy. Our in situ observations show that carbon nanotubes are not progressively etched from their ends, as frequently assumed, but disappear segment by segment. Atomic force microscopy, before and after oxidation, reveals that the oxidation of carbon nanotubes on substrates proceeds through a local cutting that is followed by a rapid etching of the disconnected nanotube segment. Unexpectedly, semiconducting nanotubes appear more reactive under these conditions than metallic ones. We also show that exposure to electron and laser beams locally increases the chemical reactivity of carbon nanotubes on such substrates. These results are rationalized by considering the effect of substrate-trapped charges on the nanotube density of states close to the Fermi level, which is impacted by the substrate type and the exposure to electron and laser beams.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Increased chemical reactivity of single-walled carbon nanotubes on oxide substrates: In situ imaging and effect of electron and laser irradiations

Show Author's information Hasan-al Mehedi1Johann Ravaux2Khadija Yazda1Thierry Michel1Saïd Tahir1Michaël Odorico2Renaud Podor2Vincent Jourdain1( )
Laboratoire Charles Coulomb (L2C)UMR 5221 CNRS-Université de Montpellier34095Montpellier, France
Institut de Chimie Séparative de MarcouleUMR 5257 CEA-CNRS-UM2-ENSCM Site de MarcouleBat 426BP 1717130207Bagnols sur Cèze cedex, France

Abstract

We studied the oxygen etching of individual single-walled carbon nanotubes on silicon oxide substrates using atomic force microscopy and high-temperature environmental scanning electron microscopy. Our in situ observations show that carbon nanotubes are not progressively etched from their ends, as frequently assumed, but disappear segment by segment. Atomic force microscopy, before and after oxidation, reveals that the oxidation of carbon nanotubes on substrates proceeds through a local cutting that is followed by a rapid etching of the disconnected nanotube segment. Unexpectedly, semiconducting nanotubes appear more reactive under these conditions than metallic ones. We also show that exposure to electron and laser beams locally increases the chemical reactivity of carbon nanotubes on such substrates. These results are rationalized by considering the effect of substrate-trapped charges on the nanotube density of states close to the Fermi level, which is impacted by the substrate type and the exposure to electron and laser beams.

Keywords: single-walled carbon nanotubes, environmental scanning electron microscopy, oxidative etching, substrate-trapped charges, electron and laser irradiations

References(58)

1

Dean, K. A.; Chalamala, B. R. The environmental stability of field emission from single-walled carbon nanotubes. Appl. Phys. Lett. 1999, 75, 3017-3019.

2

Bonard, J. -M.; Maier, F.; Stöckli, T.; Châtelain, A.; de Heer, W. A.; Salvetat, J. -P.; Forró, L. Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy 1998, 73, 7-15.

3

Futaba, D. N.; Hata, K.; Yamada, T.; Mizuno, K.; Yumura, M.; Iijima, S. Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 2005, 95, 056104.

4

Nasibulin, A. G.; Brown, D. P.; Queipo, P.; Gonzalez, D.; Jiang, H.; Kauppinen, E. I. An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide. Chem. Phys. Lett. 2006, 417, 179-184.

5

Yu, B.; Liu, C.; Hou, P. X.; Tian, Y.; Li, S. S.; Liu, B. L.; Li, F.; Kauppinen, E. I.; Cheng, H. M. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 2011, 133, 5232-5235.

6

Dillon, A. C.; Gennett, T.; Jones, K. M.; Alleman, J. L.; Parilla, P. A.; Heben, M. J. A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 1999, 11, 1354-1358.

DOI
7

Wiltshire, J. G.; Khlobystov, A. N.; Li, L. J.; Lyapin, S. G.; Briggs, G. A. D.; Nicholas, R. J. Comparative studies on acid and thermal based selective purification of HiPCO produced single-walled carbon nanotubes. Chem. Phys. Lett. 2004, 386, 239-243.

8

Zhang, G. Y.; Mann, D.; Zhang, L.; Javey, A.; Li, Y. M.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J. et al. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. USA 2005, 102, 16141-16145.

9

Xu, Y. Q.; Peng, H. Q.; Hauge, R. H.; Smalley, R. E. Controlled multistep purification of single-walled carbon nanotubes. Nano Lett. 2005, 5, 163-168.

10

Chen, Z. Y.; Ziegler, K. J.; Shaver, J.; Hauge, R. H.; Smalley, R. E. Cutting of single-walled carbon nanotubes by ozonolysis. J. Phys. Chem. B 2006, 110, 11624-11627.

11

Yu, B.; Hou, P. X.; Li, F.; Liu, B. L.; Liu, C.; Cheng, H. M. Selective removal of metallic single-walled carbon nanotubes by combined in situ and post-synthesis oxidation. Carbon 2010, 48, 2941-2947.

12

Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J. Phys. Chem. B 2001, 105, 8297-8301

13

Ajayan, P. M.; Ebbesen, T. W.; Ichihashi, T.; Iijima, S.; Tanigaki, K.; Hiura, H. Opening carbon nanotubes with oxygen and implications for filling. Nature 1993, 362, 522-525.

14

Tsang, S. C.; Harris, P. J. F.; Green, M. L. H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature 1993, 362, 520-522.

15

Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Chapter 1-Historical introduction. In Science of Fullerenes and Carbon Nanotubes; Academic Press: San Diego, 1996; pp 1-14.

16

Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998; Vol. 3.

DOI
17

Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2009, 21, 29-53.

18

Gabor, N. M.; Zhong, Z. H.; Bosnick, K.; Park, J.; McEuen, P. L. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 2009, 325, 1367-1371.

19

Allen, B. L.; Kichambare, P. D.; Star, A. Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 2007, 19, 1439-1451.

20

Burghard, M.; Klauk, H.; Kern, K. Carbon-based field-effect transistors for nanoelectronics. Adv. Mater. 2009, 21, 2586-2600.

21

Lolli, G.; Zhang, L.; Balzano, L.; Sakulchaicharoen, N.; Tan, Y. Q.; Resasco, D. E. Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J. Phys. Chem. B 2006, 110, 2108-2115.

22

Li, X. L.; Tu, X. M.; Zaric, S.; Welsher, K.; Seo, W. S.; Zhao, W.; Dai, H. J. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. J. Am. Chem. Soc. 2007, 129, 15770-15771.

23

Miyata, Y.; Kawai, T.; Miyamoto, Y.; Yanagi, K.; Maniwa, Y.; Kataura, H. Chirality-dependent combustion of single-walled carbon nanotubes. J. Phys. Chem. C 2007, 111, 9671-9677.

24

Borowiak-Palen, E.; Pichler, T.; Liu, X.; Knupfer, M.; Graff, A.; Jost, O.; Pompe, W.; Kalenczuk, R. J.; Fink, J. Reduced diameter distribution of single-wall carbon nanotubes by selective oxidation. Chem. Phys. Lett. 2002, 363, 567-572.

25

Nagasawa, S.; Yudasaka, M.; Hirahara, K.; Ichihashi, T.; Iijima, S. Effect of oxidation on single-wall carbon nanotubes. Chem. Phys. Lett. 2000, 328, 374-380.

26

Zhou, W. W.; Zhan, S. T.; Ding, L.; Liu, J. General rules for selective growth of enriched semiconducting single walled carbon nanotubes with water vapor as in situ etchant. J. Am. Chem. Soc. 2012, 134, 14019-14026.

27

Zhang, G. Y.; Qi, P. F.; Wang, X. R.; Lu, Y. R.; Li, X. L.; Tu, R.; Bangsaruntip, S.; Mann, D.; Zhang, L.; Dai, H. J. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 2006, 314, 974-977.

28

Yang, C. M.; An, K. H.; Park, J. S.; Park, K. A.; Lim, S. C.; Cho, S. H.; Lee, Y. S.; Park, W.; Park, C. Y.; Lee, Y. H. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. Phys. Rev. B 2006, 73, 075419.

29

Zhang, H. L.; Liu, Y. Q.; Cao, L. C.; Wei, D. C.; Wang, Y.; Kajiura, H.; Li, Y. M.; Noda, K.; Luo, G. F.; Wang, L. et al. A facile, low-cost, and scalable method of selective etching of semiconducting single-walled carbon nanotubes by a gas reaction. Adv. Mater. 2009, 21, 813-816.

30

Miyata, Y.; Maniwa, Y.; Kataura, H. Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide. J. Phys. Chem. B 2006, 110, 25-29.

31

Hodge, S. A.; Bayazit, M. K.; Coleman, K. S.; Shaffer, M. S. P. Unweaving the rainbow: A review of the relationship between single-walled carbon nanotube molecular structures and their chemical reactivity. Chem. Soc. Rev. 2012, 41, 4409-4429.

32

Kawai, T.; Miyamoto, Y. Chirality-dependent C-C bond breaking of carbon nanotubes by cyclo-addition of oxygen molecule. Chem. Phys. Lett. 2008, 453, 256-261.

33

Moon, C. Y.; Kim, Y. S.; Lee, E. C.; Jin, Y. G.; Chang, K. J. Mechanism for oxidative etching in carbon nanotubes. Phys. Rev. B 2002, 65, 155401.

34

An, K. H.; Park, J. S.; Yang, C.; Jeong, S. Y.; Lim, S. C.; Kang, C.; Son, J.; Jeong, M. S.; Lee, Y. H. A diameter-selective attack of metallic carbon nanotubes by nitronium ions. J. Am. Chem. Soc. 2005, 127, 5196-5203.

35

Ye, J. T.; Tang, Z. K. Raman spectra and thermal stability analysis of 0.4 nm freestanding single-walled carbon nanotubes. Phys. Rev. B 2005, 72, 045414.

36

Kroes, J. M. H.; Pietrucci, F.; Curioni, A.; Jaafar, R.; Gröning, O.; Andreoni, W. Atomic oxygen chemisorption on carbon nanotubes revisited with theory and experiment. J. Phys. Chem. C 2013, 117, 1948-1954.

37

Doyle, C. D.; Rocha, J. D. R.; Weisman, R. B.; Tour, J. M. Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts. J. Am. Chem. Soc. 2008, 130, 6795-6800.

38

Yamamoto, M.; Einstein, T. L.; Fuhrer, M. S.; Cullen, W. G. Charge inhomogeneity determines oxidative reactivity of graphene on substrates. ACS Nano 2012, 6, 8335-8341.

39

Zhou, W. W.; Rutherglen, C.; Burke, P. J. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008, 1, 158-165.

40

Zhang, L. J.; Gao, F. L.; Huang, S. M. The imaging mechanism of single-walled carbon nanotubes on Si/SiO2 wafer in scanning electron microscopy. J. Micros. 2011, 241, 188-194.

41

Li, J.; He, Y. J.; Han, Y. M.; Liu, K.; Wang, J. P.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Direct identification of metallic and semiconducting single-walled carbon nanotubes in scanning electron microscopy. Nano Lett. 2012, 12, 4095-4101.

42

Javey, A.; Guo, J.; Paulsson, M.; Wang, Q.; Mann, D.; Lundstrom, M.; Dai, H. J. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 2004, 92, 106804.

43

Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Yenilmez, E.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays. Nano Lett. 2004, 4, 1319-1322.

44

Chu, X.; Schmidt, L. D. Reactions of NO, O2, H2O, and CO2 with the basal plane of graphite. Surf. Sci. 1992, 268, 325-332.

45

Smith, B. W.; Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 2001, 90, 3509-3515.

46

Warner, J. H.; Schäffel, S.; Zhong, G. F.; Rümmeli, M. H.; Büchner, B.; Robertson, J.; Briggs, G. A. D. Investigating the diameter-dependent stability of single-walled carbon nanotubes. ACS Nano 2009, 3, 1557-1563.

47

Rau, E. I.; Fakhfakh, S.; Andrianov, M. V.; Evstafeva, E. N.; Jbara, O.; Rondot, S.; Mouze, D. Second crossover energy of insulating materials using stationary electron beam under normal incidence. Nucl. Instrum. Methods Phys. Res., Sect. B 2008, 266, 719-729.

48

Joo, J.; Chow, B. Y.; Jacobson, J. M. Patterning on insulating substrates by critical energy electron beam lithography. Nano Lett. 2006, 6, 2021-2015.

49

Liu, L.; Ryu, S.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W. Graphene oxidation: Thickness-dependent etching and strong chemical doping. Nano Lett. 2008, 8, 1965-1970.

50

Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144-148.

51

Zhang, Y. B.; Brar, V. W.; Girit, C.; Zettl, A.; Crommie, M. F. Origin of spatial charge inhomogeneity in graphene. Nat. Phys. 2009, 5, 722-726.

52

Deal, B. E. Standardized terminology for oxide charges associated with thermally oxidized silicon. J. Electrochem. Soc. 1980, 127, 979-981.

53

Mack, S.; Wolf, A.; Brosinsky, C.; Schmeisser, S.; Kimmerle, A.; Saint-Cast, P.; Hofmann, M.; Biro, D. Silicon surface passivation by thin thermal oxide/PECVD layer stack systems. IEEE J. Photovolt. 2011, 1, 135-145.

54

Biercuk, M. J.; Ilani, S.; Marcus, C. M.; McEuen, P. L. Electrical transport in single-wall carbon nanotubes. In Carbon Nanotubes, Topics in Applied Physics; Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S., Eds.; Springer-Verlag: Berlin Heidelberg, 2008; pp 455-493.

DOI
55

Kim, Y. D.; Bae, M. -H.; Seo, J. -T.; Kim, Y. S.; Kim, H.; Lee, J. H.; Ahn, J. R.; Lee, S. W.; Chun, S. -H.; Park, Y. D. Focused-laser-enabled p-n junctions in graphene field-effect transistors. ACS Nano 2013, 7, 5850-5857.

56

Harutyunyan, A. R.; Chen, G. G.; Paronyan, T. M.; Pigos, E. M.; Kuznetsov, O. A.; Hewaparakrama, K.; Kim, S. M.; Zakharov, D.; Stach, E. A.; Sumanasekera, G. U. Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 2009, 326, 116-120.

57

Schneider, G. F.; Calado, V. E.; Zandbergen, H.; Vandersypen, L. M. K.; Dekker, C. Wedging transfer of nanostructures. Nano Lett. 2010, 10, 1912-1916.

58

Podor, R.; Pailhon, D.; Ravaux, J.; Brau, H. -P. Development of an integrated thermocouple for the accurate sample temperature measurement during high temperature environmental scanning electron microscopy (HT-ESEM) experiments. Microsc. Microanal. 2015, 21, 307-312.

Video
nr-9-2-517_ESM_MovieS1.avi
nr-9-2-517_ESM_MovieS2.avi
File
nr-9-2-517_ESM.pdf (6.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 September 2015
Revised: 26 October 2015
Accepted: 29 October 2015
Published: 10 December 2015
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by European Office of Aerospace Research and Development (EOARD) and United States Air Force (USAF) (No. FA8655-12-1-2059).

Return