Journal Home > Volume 9 , Issue 2

This paper describes a novel strategy to weaken the piezopotential screening effect by forming Schottky junctions on the ZnO surface through the introduction of Au particles onto the surface. With this approach, the piezoelectric-energyconversion performance was greatly enhanced. The output voltage and current density of the Au@ZnO nanoarray-based piezoelectric nanogenerator reached 2 V and 1 μA/cm2, respectively, 10 times higher than the output of pristine ZnO nanoarray-based piezoelectric nanogenerators. We attribute this enhancement to dramatic suppression of the screening effect due to the decreased carrier concentration, as determined by scanning Kelvin probe microscope measurements and impedance analysis. The lowered capacitance of the Au@ZnO nanoarraybased piezoelectric nanogenerator also contributes to the improved output. This work provides a novel method to enhance the performance of piezoelectric nanogenerators and possibly extends to piezotronics and piezophototronics.


menu
Abstract
Full text
Outline
About this article

The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction

Show Author's information Shengnan Lu1Qingliang Liao1Junjie Qi1Shuo Liu1Yichong Liu1Qijie Liang1Guangjie Zhang1Yue Zhang1,2( )
State Key Laboratory for Advanced Metals and MaterialsSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
Key Laboratory of New Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijing100083China

Abstract

This paper describes a novel strategy to weaken the piezopotential screening effect by forming Schottky junctions on the ZnO surface through the introduction of Au particles onto the surface. With this approach, the piezoelectric-energyconversion performance was greatly enhanced. The output voltage and current density of the Au@ZnO nanoarray-based piezoelectric nanogenerator reached 2 V and 1 μA/cm2, respectively, 10 times higher than the output of pristine ZnO nanoarray-based piezoelectric nanogenerators. We attribute this enhancement to dramatic suppression of the screening effect due to the decreased carrier concentration, as determined by scanning Kelvin probe microscope measurements and impedance analysis. The lowered capacitance of the Au@ZnO nanoarraybased piezoelectric nanogenerator also contributes to the improved output. This work provides a novel method to enhance the performance of piezoelectric nanogenerators and possibly extends to piezotronics and piezophototronics.

Keywords: piezoelectric nanogenerator, screening effect, piezopotential, Schottky junction, Au@ZnO nanoarrays

References(33)

1

Liao, Q. L.; Zhang, Z.; Zhang, X. H.; Mohr, M.; Zhang, Y.; Fecht, H. -J. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 2014, 7, 917–928.

2

Zhu, G.; Wang, A. C.; Liu, Y.; Zhou, Y. S.; Wang, Z. L. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett. 2012, 12, 3086–3090.

3

Stassi, S.; Cauda, V.; Ottone, C.; Chiodoni, A.; Pirri, C. F.; Canavese, G. Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy 2015, 13, 474–481.

4

Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

5

Zhou, J.; Fei, P.; Gu, Y. D.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L. Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 2008, 8, 3973–3977.

6

Zhang, Z.; Liao, Q. L.; Zhang, X. H.; Zhang, G. J.; Li, P. F.; Lu, S. N.; Liu, S.; Zhang, Y. Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. Nanoscale 2015, 7, 1796–1801.

7

Lu, S. N.; Qi, J. J.; Liu, S.; Zhang, Z.; Wang, Z. Z.; Lin, P.; Liao, Q. L.; Liang, Q. J.; Zhang, Y. Piezotronic interface engineering on ZnO/Au-based Schottky junction for enhanced photoresponse of a flexible self-powered UV detector. ACS Appl. Mater. Interfaces 2014, 6, 14116–14122.

8

Peng, M. Z.; Li, Z.; Liu, C. H.; Zheng, Q.; Shi, X. Q.; Song, M.; Zhang, Y.; Du, S. Y.; Zhai, J. Y.; Wang, Z. L. Highresolution dynamic pressure sensor array based on piezophototronic effect tuned photoluminescence imaging. ACS Nano 2015, 9, 3143–3150.

9

Shi, J.; Zhao, P.; Wang, X. D. Piezoelectric-polarizationenhanced photovoltaic performance in depleted-heterojunction quantum-dot solar cells. Adv. Mater. 2013, 25, 916–921.

10

Zhang, Z.; Liao, Q. L.; Yu, Y. H.; Wang, X. D.; Zhang, Y. Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering. Nano Energy 2014, 9, 237–244.

11

Lu, S. N.; Qi, J. J.; Gu, Y. S.; Liu, S.; Xu, Q. K.; Wang, Z. Z.; Liang, Q. J.; Zhang, Y. Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. Nanoscale 2015, 7, 4461–4467.

12

Gao, Y. F.; Wang, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 2009, 9, 1103–1110.

13

Liu, J.; Fei, P.; Song, J. H.; Wang, X. D.; Lao, C. S.; Tummala, R.; Wang, Z. L. Carrier density and Schottky barrier on the performance of DCnanogenerator. Nano Lett. 2008, 8, 328–332.

14

Hu, Y. F.; Lin, L.; Zhang, Y.; Wang, Z. L. Replacing a battery by a nanogenerator with 20 V output. Adv. Mater. 2012, 24, 110–114.

15

Pham, T. T.; Lee, K. Y.; Lee, J. -H.; Kim, K. -H.; Shin, K. -S.; Gupta, M. K.; Kumar, B.; Kim, S. -W. Reliable operation of a nanogenerator under ultraviolet light via engineering piezoelectric potential. Energy Environ. Sci. 2013, 6, 841–846.

16

Sohn, J. I.; Cha, S. N.; Song, B. G.; Lee, S.; Kim, S. M.; Ku, J.; Kim, H. J.; Park, Y. J.; Choi, B. L.; Wang, Z. L. et al. Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation. Energy Environ. Sci. 2013, 6, 97–104.

17

Lee, S.; Lee, J.; Ko, W.; Cha, S.; Sohn, J.; Kim, J.; Park, J.; Park, Y.; Hong, J. Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications. Nanoscale 2013, 5, 9609–9614.

18

Shin, S. H.; Kim, Y. H.; Lee, M. H.; Jung, J. Y.; Seol, J. H.; Nah, J. Lithium-doped zinc oxide nanowires-polymer composite for high performance flexible piezoelectric nanogenerator. ACS Nano 2014, 8, 10844–10850.

19

Hu, Y. F.; Liu, Y.; Li, W. L.; Gao, M.; Liang, X. L.; Li, Q.; Peng, L. -M. Observation of a 2D electron gas and the tuning of the electrical conductance of ZnO nanowires by controllable surface band-bending. Adv. Funct. Mater. 2009, 19, 2380–2387.

20

Lee, K. Y.; Kumar, B.; Seo, J. S.; Kim, K. H.; Sohn, J. I.; Cha, S. N.; Choi, D.; Wang, Z. L.; Kim, S. W. p-Type polymer-hybridized high-performance piezoelectric nanogenerators. Nano Lett. 2012, 12, 1959–1964.

21

Lee, K. Y.; Bae, J.; Kim, S.; Lee, J. -H.; Yoon, G. C.; Gupta, M. K.; Kim, S.; Kim, H.; Park, J.; Kim, S. -W. Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators. Nano Energy 2014, 8, 165–173.

22

Briscoe, J.; Stewart, M.; Vopson, M.; Cain, M.; Weaver, P. M.; Dunn, S. Nanostructured p–n junctions for kinetic-toelectrical energy conversion. Adv. Energy Mater. 2012, 2, 1261–1268.

23

Jalali, N.; Woolliams, P.; Stewart, M.; Weaver, P. M.; Cain, M. G.; Dunn, S.; Briscoe, J. Improved performance of p–n junction-based ZnO nanogenerators through CuSCNpassivation of ZnO nanorods. J. Mater. Chem. A 2014, 2, 10945–10951.

24

Kang, Z.; Gu, Y. S.; Yan, X. Q.; Bai, Z. M.; Liu, Y. C.; Liu, S.; Zhang, X. H.; Zhang, Z.; Zhang, X. J.; Zhang, Y. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosens. Bioelectron. 2015, 64, 499–504.

25

Zhao, Y. G.; Fang, X. F.; Gu, Y. S.; Yan, X. Q.; Kang, Z.; Zheng, X.; Lin, P.; Zhao, L. C.; Zhang, Y. Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced L-lactate sensing. Colloid Surf. B-Biointerfaces 2015, 126, 476–480.

26

Zhang, Z.; Liao, Q. L.; Yan, X. Q.; Wang, Z. L.; Wang, W. D.; Sun, X.; Lin, P.; Huang, Y. H.; Zhang, Y. Functional nanogenerators as vibration sensors enhanced by piezotronic effects. Nano Res. 2014, 7, 190–198.

27

Palermo, V.; Palma, M.; Samorì, P. Electronic characterization of organic thin films by kelvin probe force microscopy. Adv. Mater. 2006, 18, 145–164.

28

Jeong, C. K.; Kim, I.; Park, K. I.; Oh, M. H.; Paik, H.; Hwang, G. T.; No, K.; Nam, Y. S.; Lee, K. J. Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 2013, 7, 11016–11025.

29

Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.

30

Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012, 24, 4632–4646.

31

Yang, Y.; Guo, W.; Qi, J. J.; Zhao, J.; Zhang, Y. Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt. Appl. Phys. Lett. 2010, 97, 223113.

32

Briscoe, J.; Jalali, N.; Woolliams, P.; Stewart, M.; Weaver, P. M.; Cain, M.; Dunn, S. Measurement techniques for piezoelectric nanogenerators. Energy Environ. Sci. 2013, 6, 3035–3045.

33

Lvovich, V. F. Impedance Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2012.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 August 2015
Revised: 24 September 2015
Accepted: 05 October 2015
Published: 20 November 2015
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (No. B14003), National Natural Science Foundation of China (Nos. 51527802 and 51232001), Beijing Municipal Science & Technology Commission, the Fundamental Research Funds for Central Universities.

Return