Journal Home > Volume 9 , Issue 2

Photoanodes, which are used in photoelectrochemical (PEC) water splitting, have been shown to be applicable in the construction of a PEC biosensing platform. This was realized by replacing water oxidization with oxidation of an appropriate test molecule. Here, we have demonstrated the feasibility of adopting photoanodes consisting of zinc oxide nanorods arrays decorated with plasmonic gold nanoparticles (Au NPs@ZnO NRs) for the self-powered PEC bioanalysis of glutathione (GSH) in phosphate-buffered saline (PBS) at an applied bias potential of 0 V vs. Ag/AgCl. This heterostructure exhibited enhanced PEC properties because of the introduction of the Au/ZnO interface. Under visible light illumination, hot electrons from surface-plasmon resonance (SPR) at the Au NP surface were injected into the adjacent ZnO and subsequently driven to the photocathode. Under ultraviolet (UV) light illumination, the photogenerated electrons in ZnO tended to transfer to the fluorine-doped tin oxide due to the step-wise energy band structure and the upward energy band bending at the ZnO/electrolyte interface. These results indicate that plasmonic metal/semiconductor heterostructure photoanodes have great potential for self-powered PEC bioanalysis applications and extended field of other photovoltaic beacons.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array

Show Author's information Zhuo Kang1Xiaoqin Yan1Yunfei Wang1Yanguang Zhao1Zhiming Bai1Yichong Liu1Kun Zhao1Shiyao Cao1Yue Zhang1,2( )
State Key Laboratory for Advanced Metals and MaterialsSchool of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijing100083China
Key Laboratory of New Energy Materials and TechnologiesUniversity of Science and Technology BeijingBeijing100083China

Abstract

Photoanodes, which are used in photoelectrochemical (PEC) water splitting, have been shown to be applicable in the construction of a PEC biosensing platform. This was realized by replacing water oxidization with oxidation of an appropriate test molecule. Here, we have demonstrated the feasibility of adopting photoanodes consisting of zinc oxide nanorods arrays decorated with plasmonic gold nanoparticles (Au NPs@ZnO NRs) for the self-powered PEC bioanalysis of glutathione (GSH) in phosphate-buffered saline (PBS) at an applied bias potential of 0 V vs. Ag/AgCl. This heterostructure exhibited enhanced PEC properties because of the introduction of the Au/ZnO interface. Under visible light illumination, hot electrons from surface-plasmon resonance (SPR) at the Au NP surface were injected into the adjacent ZnO and subsequently driven to the photocathode. Under ultraviolet (UV) light illumination, the photogenerated electrons in ZnO tended to transfer to the fluorine-doped tin oxide due to the step-wise energy band structure and the upward energy band bending at the ZnO/electrolyte interface. These results indicate that plasmonic metal/semiconductor heterostructure photoanodes have great potential for self-powered PEC bioanalysis applications and extended field of other photovoltaic beacons.

Keywords: photoelectrochemical, glutathione, biosensor, plasmonic gold nanoparticle, ZnO nanorod array

References(39)

1

Bequerel, E. Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen descourants électriques. C. R. Acad. Sci. 1839, 9, 145–149.

2

Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344.

3

Bard, A. J. Photoelectrochemistry. Science 1980, 207, 139–144.

4

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

5

Wang, G. M.; Yang, X. Y.; Qian, F.; Zhang, J. Z.; Li, Y. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 2010, 10, 1088–1092.

6

Yang, X. Y.; Wolcott, A.; Wang, G. M.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9, 2331–2336.

7

Zhao, W. -W.; Xu, J. -J.; Chen, H. -Y. Photoelectrochemical DNA biosensors. Chem. Rev. 2014, 114, 7421–7441.

8

Gill, R.; Zayats, M.; Willner, I. Semiconductor quantum dots for bioanalysis. Angew. Chem., Int. Ed. 2008, 47, 7602–7625.

9

Kang, Z.; Gu, Y. S.; Yan, X. Q.; Bai, Z. M.; Liu, Y. H.; Liu, S.; Zhang, X. H.; Zhang, Z.; Zhang, X. J.; Zhang, Y. Enhanced photoelectrochemical property of ZnO nanorods array synthesized on reduced graphene oxide for self-powered biosensing application. Biosen. Bioelectro. 2015, 64, 499–504.

10

Yue, Z.; Lisdat, F.; Parak, W. J.; Hickey, S. G.; Tu, L. P.; Sabir, N.; Dorfs, D.; Bigall, N. C. Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Inter. 2013, 5, 2800–2814.

11

Freeman, R.; Girsh, J.; Willner, I. Nucleic acid/quantum dots (QDs) hybrid systems for optical and photoelectrochemical sensing. ACS Appl. Mater. Inter. 2013, 5, 2815–2834.

12

Kang, Z.; Yan, X. Q.; Wang, Y. F.; Bai, Z. M.; Liu, Y. C.; Zhang, Z.; Lin, P.; Zhang, X. H.; Yuan, H. G.; Zhang, X. J. et al. Electronic structure engineering of Cu2O film/ZnO nanorods array all-oxide p-n heterostructure for enhancedphotoelectrochemical property and self-powered biosensingapplication. Sci. Rep. 2015, 5, 7882.

13

Yan, K.; Wang, R.; Zhang, J. D. A photoelectrochemical biosensor for o-aminophenol based on assembling of CdSe and DNA on TiO2 film electrode. Biosens. Bioelectro. 2014, 53, 301–304.

14

Zhang, X. R.; Liu, M. S.; Liu, H. X.; Zhang, S. S. Lowtoxic Ag2S quantum dots for photoelectrochemical detection glucose and cancer cells. Biosens. Bioelectro. 2014, 56, 307–312.

15

Zhao, W. -W.; Liu, Z.; Shan, S.; Zhang, W. -W.; Wang, J.; Ma, Z. -Y.; Xu, J. -J.; Chen, H. -Y. Bismuthoxyiodide nanoflakes/titania nanotubes arrayed p-n heterojunction and its application for photoelectrochemical bioanalysis. Sci. Rep. 2014, 4, 4426.

16

Li, W. L.; Sheng, P. T.; Cai, J.; Feng, H. Y.; Cai, Q. Y. Highly sensitive and selective photoelectrochemical biosensor platform for polybrominated diphenyl ether detection using the quantum dots sensitized three-dimensional, macroporous ZnO nanosheet photoelectrode. Biosens. Bioelectro. 2014, 61, 209–214.

17

Tang, J.; Kong, B.; Wang, Y. C.; Xu, M.; Wang, Y. L.; Wu, H.; Zheng, G. F. Photoelectrochemical detection of glutathione by IrO2–hemin–TiO2 nanowire arrays. Nano Lett. 2013, 13, 5350–5354.

18

Zhan, W. -W.; Kuang, Q.; Zhou, J. -Z.; Kong, X. -J.; Xie, Z. -X.; Zheng, L. -S. Semiconductor@metal–organic framework core–shell heterostructures: A case of ZnO@ ZIF-8 nanorods with selective photoelectrochemical response. J. Am. Chem. Soc. 2013, 135, 1926–1933.

19

Zhao, X. M.; Zhou, S. W.; Shen, Q. M.; Jiang, L. -P.; Zhu, J. -J. Fabrication of glutathione photoelectrochemical biosensor using graphene–CdS nanocomposites. Analyst 2012, 137, 3697–3703.

20

Zhang, X. R.; Li, S. G.; Jin, X.; Zhang, S. S. A new photoelectrochemical aptasensor for the detection of thrombin based on functionalized graphene and CdSe nanoparticles multilayers. Chem. Comm. 2011, 47, 4929–4931.

21

Zhang, Z. H.; Zhang, L. B.; Hedhili, M. N.; Zhang, H. N.; Wang, P. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013, 13, 14–20.

22

Pu, Y. -C.; Wang, G. M.; Chang, K. -D.; Ling, Y. C.; Lin, Y. -K.; Fitzmorris, B. C.; Liu, C. -M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.

23

Liu, L. P.; Wang, G. M.; Li, Y.; Li, Y. D.; Zhang, J. Z. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Res. 2011, 4, 249–258.

24

Chen, H. M.; Chen, C. K.; Chen, C. -J.; Cheng, L. -C.; Wu, P. C.; Cheng, B. H.; Ho, Y. Z.; Tseng, M. L.; Hsu, Y. -Y.; Chan, T. -S. et al. Plasmon inducing effects for enhanced photoelectrochemical water splitting: X-ray absorption approach to electronic structures. ACS Nano 2012, 6, 7362–7372.

25

Zhang, X.; Liu, Y.; Kang, Z. H. 3D branched ZnO nanowire arrays decorated with plasmonic Au nanoparticles for highperformance photoelectrochemical water splitting. ACS Appl. Mater. Inter. 2014, 6, 4480–4489.

26

Wang, T.; Lv, R.; Zhang, P.; Li, C. J.; Gong, J. L. Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 2015, 7, 77–81.

27

Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4087–4108.

28

Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.

29

Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301, 935–938.

30

Kang, Z.; Yan, X. Q.; Zhao, L. Q.; Liao, Q. L.; Zhao, K.; Du, H. W.; Zhang, X. H.; Zhang, X. J.; Zhang, Y. Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. Nano Res. 2015, 8, 2004–2014.

31

Kruse, N.; Chenakin, S. XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects. Appl. Catal. A-Gen. 2011, 391, 367–376.

32

Zhang, X. T.; Liu, Y. C.; Zhang, J. Y.; Lu, Y. M.; Shen, D. Z.; Fan, X. W.; Kong, X. G. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO thin films. J. Cryst. Growth 2003, 254, 80–85.

33

Leng, W. H.; Zhang, Z.; Zhang, J. Q.; Cao, C. N. Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B 2005, 109, 15008–15023.

34

Wang, M. Y.; Sun, L.; Lin, Z. Q.; Cai, J. H.; Xie, K. P.; Lin, C. Q. p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy Environ. Sci. 2013, 6, 1211–1220.

35

Ouyang, L.; Zhu, L. H.; Jiang, J. Z.; Tang, H. Q. A surfaceenhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe. Anal. Chim. Acta 2014, 816, 41–49.

36

Yang, K.; Wang, H.; Zou, K.; Zhang, X. H. Gold nanoparticlemodified silicon nanowires as biosensors. Nanotechnology2006, 17, S276.

37

Ndamanisha, J. C.; Bai, J.; Qi, B.; Guo, L. P. Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Anal. Biochem. 2009, 386, 79–84.

38

Wang, Y.; Lu, J.; Tang, L. H.; Chang, H. X.; Li, J. H. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds. Anal. Chem. 2009, 81, 9710–9715.

39

Tu, W. W.; Dong, Y. T.; Lei, J. P.; Ju, H. X. Low-potential photoelectrochemical biosensing using porphyrin-functionalized TiO2 nanoparticles. Anal. Chem. 2010, 82, 8711–8716.

File
nr-9-2-344_ESM.pdf (626.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 July 2015
Revised: 16 September 2015
Accepted: 28 September 2015
Published: 18 November 2015
Issue date: February 2016

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by the National Major Research Program of China (No. 2013CB932602), the Program of Introducing Talents of Discipline to Universities (No. B14003), the National Natural Science Foundation of China (No. 51232001 and 51527802), Beijing Municipal Science & Technology Commission, the Fundamental Research Funds for the Central Universities.

Return