AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A green method of staining DNA in polyacrylamide gel electrophoresis based on fluorescent copper nanoclusters synthesized in situ

Xiaoli Zhu1Hai Shi1Yalan Shen1Bin Zhang1Jing Zhao1Genxi Li1,2( )
Laboratory of Biosensing TechnologySchool of Life SciencesShanghai UniversityShanghai200444China
State Key Laboratory of Pharmaceutical BiotechnologyDepartment of BiochemistryNanjing UniversityNanjing210093China
Show Author Information

Graphical Abstract

Abstract

The safety of nucleic acid staining dyes has long been recognized to be a problem. Extensive efforts have been made to search for alternatives to the most popular but toxic staining dye, ethidium bromide (EtBr). However, so far no staining method that can be guaranteed to be sufficiently safe has been developed. In this paper, we report a green staining method of DNA in polyacrylamide gel electrophoresis, where in situ synthesis of DNA-templated fluorescent copper nanoclusters (CuNCs) in the gel is achieved to make the DNA bands visible under UV light. Moreover, a comprehensive study of the performance of this staining method has been conducted and the experimental results show that it has favorable sensitivity, stability, and usability. Meanwhile, in our animal experiments, the two reagents (copper sulfate and ascorbic acid) as well as the synthesized CuNCs have been proven to be non-toxic in contact with skin. In addition, all the reagents employed in this work are readily available and low cost, and the procedure is simple to carry out. Therefore, this novel staining method based on the in situ synthesis DNA-templated fluorescent CuNCs has many potential applications.

Electronic Supplementary Material

Download File(s)
12274_2015_778_MOESM1_ESM.pdf (2 MB)

References

1

Meyers, J. A.; Sanchez, D.; Elwell, L. P.; Falkow, S. Simple agarose gel electrophoretic method for the identification and characterization of plasmid deoxyribonucleic acid. J. Bacteriol. 1976, 127, 1529-1537.

2

Lee, J. D.; Huang, C. H.; Wang, N. W.; Lu, C. S. Automatic DNA sequencing for electrophoresis gels using image processing algorithms. J. Biomed. Sci. Eng. 2011, 4, 523-528.

3

Ogier, J. C.; Son, O.; Gruss, A.; Tailliez, P.; Delacroix-Buchet, A. Identification of the bacterial microflora in dairy products by temporal temperature gradient gel electrophoresis. Appl. Environ. Microb. 2002, 68, 3691-3701.

4

Rotaru, A.; Dutta, S.; Jentzsch, E.; Gothelf, K.; Mokhir, A. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew. Chem. Int. Edit. 2010, 49, 5665-5667.

5

Yi, S. H.; Xu, L. C.; Mei, K.; Yang, R. Z.; Huang, D. X. Isolation and identification of age-related DNA methylation markers for forensic age-prediction. Forensic. Sci. Int. : Genet. 2014, 11, 117-125.

6

Aaij, C.; Borst, P. The gel electrophoresis of DNA. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 1972, 269, 192-200.

7

Singer, V. L.; Lawlor, T. E.; Yue, S. Comparison of SYBR (R) green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the salmonella/mammalian microsome reverse mutation assay (ames test). Mutat. Res., Genet. Toxicol. Environ. Mutagen. 1999, 439, 37-47.

8

Ohta, T.; Tokishita, S.; Yamagata, H. Ethidium bromide and SYBR Green I enhance the genotoxicity of UV-irradiation and chemical mutagens in E-coli. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 2001, 492, 91-97.

9

Yang, Y. Y.; Chen, S. W. Surface manipulation of the electronic energy of subnanometer-sized gold clusters: An electrochemical and spectroscopic investigation. Nano. Lett. 2003, 3, 75-79.

10

Peyser, L. A.; Vinson, A. E.; Bartko, A. P.; Dickson, R. M. Photoactivated fluorescence from individual silver nanoclusters. Science. 2001, 291, 103-106.

11

Hicks, J. F.; Miles, D. T.; Murray, R. W. Quantized double-layer charging of highly monodisperse metal nanoparticles. J. Am. Chem. Soc. 2002, 124, 13322-13328.

12

Vosch, T.; Antoku, Y.; Hsiang, J. C.; Richards, C. I.; Gonzalez, J. I.; Dickson, R. M. Strongly emissive individual DNA-encapsulated Ag nanoclusters as single-molecule fluorophores. Proc. Natl. Acad. Sci. USA 2007, 104, 12616-12621.

13

Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(Ⅱ). Angew. Chem. Int. Edit. 2007, 46, 6824-6828.

14

Seeman, N. C. DNA in a material world. Nature 2003, 421, 427-431.

15

Lin, C. X.; Liu, Y.; Rinker, S.; Yan, H. DNA tile based self-assembly: Building complex nanoarchitectures. ChemPhysChem 2006, 7, 1641-1647.

16

Lin, C. X.; Liu, Y.; Yan, H. Designer DNA nanoarchitectures. Biochemistry 2009, 48, 1663-1674.

17

Sharma, J.; Yeh, H. C.; Yoo, H.; Werner, J. H.; Martinez, J. S. A complementary palette of fluorescent silver nanoclusters. Chem. Commun. 2010, 46, 3280-3282.

18

Rotaru, A.; Dutta, S.; Jentzch, E.; Gothelf, K.; Mokhir, A. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew. Chem. Int. Ed. 2010, 49, 5665-5667.

19

Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 2004, 126, 5207-5212.

20

Liu, G. Y.; Shao, Y.; Ma, K.; Cui, Q. H.; Wu, F.; Xu, S. J. Synthesis of DNA-templated fluorescent gold nanoclusters. Gold Bull. 2012, 45, 69-74.

21

Monson, C. F.; Woolley, A. T. DNA-templated construction of copper nanowires. Nano lett. 2003, 3, 359-363.

22

Qing, Z. H.; He, X. X.; He, D. G.; Wang, K. M.; Xu, F. Z.; Qing, T. P.; Yang, X. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles. Angew. Chem. Int. Edit. 2013, 52, 9719-9722.

23

Liu, G. Y.; Shao, Y.; Peng, J.; Dai, W.; Liu, L. L.; Xu, S. J.; Wu, F.; Wu, X. H. Highly thymine-dependent formation of fluorescent copper nanoparticles templated by ss-DNA. Nanotechnology 2013, 24, 345502.

24

Zhang, L. L.; Zhao, J. J.; Duan, M.; Zhang, H.; Jiang, J. H.; Yu, R. Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay. Anal. Chem. 2013, 85, 3797-3801.

25

Xu, F. Z.; Shi, H.; He, X. X.; Wang, K.; He, D. G.; Guo, Q.; Qing, Z. H.; Yan, L. A.; Ye, X. S.; Li, D. et al. Concatemeric dsDNA-templated copper nanoparticles strategy with improved sensitivity and stability based on rolling circle replication and its application in microRNA detection. Anal. Chem. 2014, 86, 6976-6982.

26

Chen, J. H.; Liu, J.; Fang, Z. Y.; Zeng, L. W. Random dsDNA-templated formation of copper nanoparticles as novel fluorescence probes for label-free lead ions detection. Chem. Commun. 2012, 48, 1057-1059.

27

Pacioni, N. L.; Filippenko, V.; Presseau, N.; Scaiano, J. C. Oxidation of copper nanoparticles in water: Mechanistic insights revealed by oxygen uptake and spectroscopic methods. Dalton Trans. 2013, 42, 5832-5838.

28

Chen, T. S.; Zeng, S. Q.; Zhou, W.; Luo, Q. M. A. Quantitative theory model of a photobleaching mechanism. Chinese Phys. Lett. 2003, 20, 1940-1943.

Nano Research
Pages 2714-2720
Cite this article:
Zhu X, Shi H, Shen Y, et al. A green method of staining DNA in polyacrylamide gel electrophoresis based on fluorescent copper nanoclusters synthesized in situ. Nano Research, 2015, 8(8): 2714-2720. https://doi.org/10.1007/s12274-015-0778-y

712

Views

41

Crossref

N/A

Web of Science

45

Scopus

2

CSCD

Altmetrics

Received: 28 November 2014
Revised: 26 March 2015
Accepted: 02 April 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return