Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Silicon is the most promising anode material for the next generation high-performance lithium ion batteries. However, its commercial application is hindered by its poor performance due to the huge volume change during cycling. Although two-dimensional silicon-based materials show significantly improved performance, flexible synthesis of such materials is still a challenge. In this work, silicon-based nanosheets with a multilayer structure are synthesized for the first time by a topochemical reaction. The morphology and oxidation state of these nanosheets can be controlled by appropriate choice of reaction media and oxidants. Benefiting from the hierarchical structure and ultrathin size, when the silicon-based nanosheets are employed as anodes they exhibit a charge (delithiation) capacity of 800 mAh/g after 50 cycles with a maximum coulombic efficiency of 99.4% and good rate performance (647 mAh/g at 1 A/g). This work demonstrates a novel method for preparing nanosheets not only for lithium ion batteries but also having various potential applications in other fields, such as catalysts, electronics and photonics.
Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593-4607.
Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928-935.
Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D. W.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577-3613.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652-657.
Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mat. 2010, 22, 587-603.
Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243-3262.
Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003-1039.
Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115-3141.
Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414-429.
Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.
Beaulieu, L. Y.; Hatchard, T. D.; Bonakdarpour, A.; Fleischauer, M. D.; Dahn, J. R. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 2003, 150, A1457-A1464.
He, Y.; Yu, X. Q.; Li, G.; Wang, R.; Li, H.; Wang, Y. L.; Gao, H. J.; Huang, X. J. Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction. J. Power Sources 2012, 216, 131-138.
Li, H.; Huang, X. J.; Chen, L. Q.; Wu, Z. G.; Liang, Y. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem. Solid State Lett. 1999, 2, 547-549.
Zhou, X. S.; Cao, A. M.; Wan, L. J.; Guo, Y. G. Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Res. 2012, 5, 845-853.
Zhou, X. S.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chem. Commun. 2012, 48, 2198-2200.
Ma, H.; Cheng, F. Y.; Chen, J. Y.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 2007, 19, 4067-4070.
Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N. A.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949-2954.
Li, H.; Huang, X. J.; Chen, L. Q.; Zhou, G. W.; Zhang, Z.; Yu, D. P.; Mo, Y. J.; Pei, N. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 2000, 135, 181-191.
Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31-35.
Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174-181.
Yu, Y.; Gu, L.; Zhu, C. B.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon. Adv. Mater. 2010, 22, 2247-2250.
Zhang, Z. L.; Wang, Y. H.; Ren, W. F.; Tan, Q. Q.; Chen, Y. F.; Li, H.; Zhong, Z. Y.; Su, F. B. Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries. Angew. Chem. Int. Ed. 2014, 53, 5165-5169.
Okamoto, H.; Sugiyama, Y.; Nakano, H. Synthesis and modification of silicon nanosheets and other silicon nanomaterials. Chem. —Eur. J. 2011, 17, 9864-9887.
Liu, J. H.; Liu, X. W. Two-dimensional nanoarchitectures for lithium storage. Adv. Mater. 2012, 24, 4097-4111.
Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766-3798.
Shi, W. S.; Peng, H. Y.; Wang, N.; Li, C. P.; Xu, L.; Lee, C. S.; Kalish, R.; Lee, S. T. Free-standing single crystal silicon nanoribbons. J. Am. Chem. Soc. 2001, 123, 11095-11096.
Okubo, T.; Yamada, T.; Saito, M.; Yodoya, C.; Kamei, A.; Hirota, M.; Takenaka, T.; Tasaka, A.; Inaba, M. Carbon coating of Si thin flakes and negative electrode properties in lithium-ion batteries. Electrochemistry 2012, 80, 720-724.
Saito, M.; Yamada, T.; Yodoya, C.; Kamei, A.; Hirota, M.; Takenaka, T.; Tasaka, A.; Inaba, M. Influence of Li diffusion distance on the negative electrode properties of Si thin flakes for Li secondary batteries. Solid State Ionics 2012, 225, 506-509.
Lu, Z. Y.; Zhu, J. X.; Sim, D. H.; Zhou, W. W.; Ship, W. H.; Hng, H. H.; Yan, Q. Y. Synthesis of ultrathin silicon nanosheets by using graphene oxide as template. Chem. Mat. 2011, 23, 5293-5295.
Yu, X. H.; Xue, F. H.; Huang, H.; Liu, C. J.; Yu, J. Y.; Sun, Y. J.; Dong, X. L.; Cao, G. Z.; Jung, Y. G. Synthesis and electrochemical properties of silicon nanosheets by dc arc discharge for lithium-ion batteries. Nanoscale 2014, 6, 6860-6865.
Kim, U.; Kim, I.; Park, Y.; Lee, K. Y.; Yim, S. Y.; Park, J. G.; Ahn, H. G.; Park, S. H.; Choi, H. J. Synthesis of Si nanosheets by a chemical vapor deposition process and their blue emissions. Acs Nano 2011, 5, 2176-2181.
Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-571.
Nakano, H.; Ishii, M.; Nakamura, H. Preparation and structure of novel siloxene nanosheets. Chem. Commun. 2005, 2945-2947.
Nakano, H.; Mitsuoka, T.; Harada, M.; Horibuchi, K.; Nozaki, H.; Takahashi, N.; Nonaka, T.; Seno, Y.; Nakamura, H. Soft synthesis of single-crystal silicon monolayer sheets. Angew. Chem. Int. Ed. 2006, 45, 6303-6306.
Sugiyama, Y.; Okamoto, H.; Mitsuoka, T.; Morikawa, T.; Nakanishi, K.; Ohta, T.; Nakano, H. Synthesis and optical properties of monolayer organosilicon nanosheets. J. Am. Chem. Soc. 2010, 132, 5946-5947.
Okamoto, H.; Kumai, Y.; Sugiyama, Y.; Mitsuoka, T.; Nakanishi, K.; Ohta, T.; Nozaki, H.; Yamaguchi, S.; Shirai, S.; Nakano, H. Silicon nanosheets and their self-assembled regular stacking structure. J. Am. Chem. Soc. 2010, 132, 2710-2718.
Nakano, H.; Nakano, M.; Nakanishi, K.; Tanaka, D.; Sugiyama, Y.; Ikuno, T.; Okamoto, H.; Ohta, T. Preparation of alkyl-modified silicon nanosheets by hydrosilylation of layered polysilane (Si6H6). J. Am. Chem. Soc. 2012, 134, 5452-5455.
Miyachi, M.; Yamamoto, H.; Kawai, H. Electrochemical properties and chemical structures of metal-doped SiO anodes for Li-ion rechargeable batteries. J. Electrochem. Soc. 2007, 154, A376-A380.
Park, C. M.; Choi, W.; Hwa, Y.; Kim, J. H.; Jeong, G.; Sohn, H. J. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. J. Mater. Chem. 2010, 20, 4854-4860.
Choi, N. S.; Yew, K. H.; Lee, K. Y.; Sung, M.; Kim, H.; Kim, S. S. Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 2006, 161, 1254-1259.
Kong, F.; Kostecki, R.; Nadeau, G.; Song, X.; Zaghib, K.; Kinoshita, K.; McLarnon, F. In situ studies of SEI formation. J. Power Sources 2001, 97, 58-66.
Nagao, Y.; Sakaguchi, H.; Honda, H.; Fukunaga, T.; Esaka, T. Structural analysis of pure and electrochemically lithiated SiO using neutron elastic scattering. J. Electrochem. Soc. 2004, 151, A1572-A1575.
Zhang, X. Y.; Liu, D. X.; Xu, D. D.; Asahina, S.; Cychosz, K. A.; Agrawal, K. V.; Al Wahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O. et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science 2012, 336, 1684-1687.
Liu, J. H.; Wei, X. F.; Wang, X.; Liu, X. W. High-yield synthesis of ultrathin silica-based nanosheets and their superior catalytic activity in H2O2 decomposition. Chem. Commun. 2011, 47, 6135-6137.
Bao, Z.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z. et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 2007, 446, 172-175.
Yoo, J. K.; Kim, J.; Jung, Y. S.; Kang, K. Scalable fabrication of silicon nanotubes and their application to energy storage. Adv. Mater. 2012, 24, 5452-5456.