Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We demonstrated a method to fabricate functional hybrid film patches that were used to form Pickering emulsions (PEs). The hybrid patches were made of carbon nanotubes, Fe3O4 nanoparticles, octadecyltrimethoxysilane, and poly(diallyldimethylammonium chloride). The aqueous phase of the hybrid-patch stabilized PEs can be easily separated by applying a magnetic field. The hybrid-film-patch stabilized PEs are extremely stable and lasted for eight months at room temperature. Furthermore, they are easily ruptured by adding ethanol, and regenerated by vortexing the patches in aqueous/oil mixtures, enabling the inner hydrophilic side of the patches to be easily modified with metal nanoparticles. As an example, palladium nanoparticles were embedded into the surface of the hybrid patches using an in situ reduction method. The Pd functionalized patch formed PEs showed an excellent catalytic performance for the hydrogenation of acetone with a yield of 99.5%. The same batch of Pd functionalized patches was recycled 13 times without loss of the catalytic activity. The hybrid-patch formed PEs have a great potential in the catalytic field.
Binks, B. P.; Horozov, T. S. Colloidal particles at liquid interfaces; Cambridge University Press: Cambridge, UK, 2006.
Pickering, S. U. M. Cxcvi. -emulsions. J. Chem. Soc. T. 1907, 91, 2001-2021.
Wang, H. L.; Zhu, X. M.; Tsarkova, L.; Pich, A.; Möller, M. All-silica colloidosomes with a particle-bilayer shell. ACS Nano 2011, 5, 3937-3942.
Crossley, S.; Faria, J.; Shen, M.; Resasco, D. E. Solid nanoparticles that catalyze biofuel upgrade reactions at the water/oil interface. Science 2010, 327, 68-72.
Yang, H. Q.; Zhou, T.; Zhang, W. J. A strategy for separating and recycling solid catalysts based on the pH-triggered Pickering-emulsion inversion. Angew. Chem. Int. Ed. 2013, 125, 7603-7607.
Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Colloidosomes: Selectively permeable capsules composed of colloidal particles. Science 2002, 298, 1006-1009.
Gu, X. Y.; Ning, Y.; Yang, Y.; Wang, C. Y. One-step synthesis of porous graphene-based hydrogels containing oil droplets for drug delivery. RSC Adv. 2014, 4, 3211-3218.
Frelichowska, J.; Bolzinger, M. A.; Valour, J. P.; Mouaziz, H.; Pelletier, J.; Chevalier, Y. Pickering w/o emulsions: Drug release and topical delivery. Int. J. Pharm. 2009, 368, 7-15.
Chen, H. B.; Zhu, H. D.; Hu, J. D.; Zhao, Y. B.; Wang, Q.; Wan, J. L.; Yang, Y. J.; Xu, H. B.; Yang, X. L. Highly compressed assembly of deformable nanogels into nanoscale suprastructures and their application in nanomedicine. ACS Nano 2011, 5, 2671-2680.
Calderó, G.; García-Celma, M. J.; Solans, C.; Plaza, M.; Pons, R. Influence of composition variables on the molecular diffusion from highly concentrated water-in-oil emulsions (gel−emulsions). Langmuir 1997, 13, 385-390.
Patravale, V. B.; Mandawgade, S. D. Novel cosmetic delivery systems: An application update. Int. J. Cosmetic Sci. 2008, 30, 19-33.
Chevalier, Y.; Bolzinger, M. A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloid. Surface. A 2013, 439, 23-34.
Pan, J. M.; Li, L. Z.; Hang, H.; Wu, R. R.; Dai, X. H.; Shi, W. D.; Yan, Y. S. Fabrication and evaluation of magnetic/hollow double-shelled imprinted sorbents formed by Pickering emulsion polymerization. Langmuir 2013, 29, 8170-8178.
Shen, M.; Resasco, D. E. Emulsions stabilized by carbon nanotube-silica nanohybrids. Langmuir 2009, 25, 10843-10851.
Tan, H. Y.; Zhang, P.; Wang, L.; Yang, D.; Zhou, K. B. Multifunctional amphiphilic carbonaceous microcapsules catalyze water/oil biphasic reactions. Chem. Commun. 2011, 47, 11903-11905.
Yu, C.; Fan, L. M.; Yang, J.; Shan, Y. Y.; Qiu, J. S. Phase-reversal emulsion catalysis with CNT-TiO2 nanohybrids for the selective oxidation of benzyl alcohol. Chem. Eur. J. 2013, 19, 16192-16195.
Zhai, W. Y.; Li, G. P.; Yu, P.; Yang, L. F.; Mao, L. Q. Silver phosphate/carbon nanotube-stabilized Pickering emulsion for highly efficient photocatalysis. J. Phys. Chem. C 2013, 117, 15183-15191.
Binks, B. P.; Lumsdon, S. O. Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 2000, 16, 8622-8631.
Shi, J. F.; Wang, X. L.; Zhang, W. Y.; Jiang, Z. Y.; Liang, Y. P.; Zhu, Y. Y.; Zhang, C. H. Synergy of Pickering emulsion and sol-gel process for the construction of an efficient, recyclable enzyme cascade system. Adv. Funct. Mater. 2013, 23, 1450-1458.
Chen, T.; Colver, P. J.; Bon, S. A. F. Organic-inorganic hybrid hollow spheres prepared from TiO2-stabilized Pickering emulsion polymerization. Adv. Mater. 2007, 19, 2286-2289.
Wu, C. Z.; Bai, S.; Ansorge-Schumacher, M. B.; Wang, D. Y. Nanoparticle cages for enzyme catalysis in organic media. Adv. Mater. 2011, 23, 5694-5699.
Zhou, W. J.; Fang, L.; Fan, Z.; Albela, B.; Bonneviot, L.; De Campo, F.; Pera-Titus, M.; Clacens, J. M. Tunable catalysts for solvent-free biphasic systems: Pickering interfacial catalysts over amphiphilic silica nanoparticles. J. Am. Chem. Soc. 2014, 136, 4869-4872.
Reger, M.; Sekine, T.; Okamoto, T.; Watanabe, K.; Hoffmann, H. Pickering emulsions stabilized by novel clay-hydrophobin synergism. Soft Matter 2011, 7, 11021-11030.
Zhou, J.; Qiao, X. Y.; Binks, B. P.; Sun, K.; Bai, M. W.; Li, Y. L.; Liu, Y. Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles. Langmuir 2011, 27, 3308-3316.
Wang, Z. P.; van Oers, M. C. M.; Rutjes, F. P. J. T.; van Hest, J. C. M. Polymersome colloidosomes for enzyme catalysis in a biphasic system. Angew. Chem. Int. Ed. 2012, 51, 10746-10750.
Tu, F. Q.; Lee, D. Shape-changing and amphiphilicity-reversing Janus particles with pH-responsive surfactant properties. J. Am. Chem. Soc. 2014, 136, 9999-10006.
Wongkongkatep, P.; Manopwisedjaroen, K.; Tiposoth, P.; Archakunakorn, S.; Pongtharangkul, T.; Suphantharika, M.; Honda, K.; Hamachi, I.; Wongkongkatep, J. Bacteria interface Pickering emulsions stabilized by self-assembled bacteria-chitosan network. Langmuir 2012, 28, 5729-5736.
Binks, B. P.; Clint, J. H.; Mackenzie, G.; Simcock, C.; Whitby, C. P. Naturally occurring spore particles at planar fluid interfaces and in emulsions. Langmuir 2005, 21, 8161-8167.
Liang, F. X.; Shen, K.; Qu, X. Z.; Zhang, C. Q.; Wang, Q.; Li, J. L.; Liu, J. G.; Yang, Z. Z. Inorganic Janus nanosheets. Angew. Chem. Int. Ed. 2011, 50, 2379-2382.
Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 117, 2842-2845.
Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc. 2007, 130, 28-29.
Avilés, F.; Cauich-Rodríguez, J. V.; Moo-Tah, L.; May-Pat, A.; Vargas-Coronado, R. Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 2009, 47, 2970-2975.
Ma, S. H.; Yong, D. M.; Zhang, Y.; Wang, X. J.; Han, X. J. A universal approach for the reversible phase transfer of hydrophilic nanoparticles. Chem. Eur. J. 2014, 20, 15580-15586.
Reincke, F.; Hickey, S. G.; Kegel, W. K.; Vanmaekelbergh, D. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chem. Int. Ed. 2004, 43, 458-462.