AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Giga- and terahertz-range nanoemitter based on peapod structure

Michail M. Slepchenkov1Anna S. Kolesnikova1George V. Savostyanov1Igor S. Nefedov2Ilya V. Anoshkin2Albert G. Nasibulin2,3Olga E. Glukhova1( )
Department of PhysicsSaratov State UniversitySaratov410012Russia
Department of Radio Science and EngineeringAalto University, Aalto, P.O. Box13000Finland
Skolkovo Institute of Science and TechnologySkolkovo143025Russia
Show Author Information

Graphical Abstract

Abstract

We propose a theoretical model of a nanoemitter for giga- and terahertz-range waves. The model is based on a peapod structure comprising a carbon nanotube with chiral indices (10, 10). Three encapsulated and partially polymerized fullerene C60 molecules and a positively charged C60 fullerene are trapped inside the nanotube. The motion of the charged fullerene and the radiation frequency were controlled using an external electric field. Stable terahertz radiation at a frequency of 0.36 THz was produced at 300 K with an external electrical field of 10 V/μm. Stable radiation in the gigahertz range was observed at 50 K with an electric field below 10 V/μm. A theoretical simulation was performed using the tight-binding molecular dynamics method with a description of the van der Waals interaction by the Morse potential. The system described by the theoretical model was experimentally observed.

References

1

Recur, B.; Guillet, J. P.; Bassel, L.; Fragnol, C.; Manek-Hönninger, I.; Delagnes, J. C.; Benharbone, W.; Desbarats, P.; Domenger, J. P.; Mounaix, P. Terahertz radiation for tomographic inspection. Opt. Eng. 2012, 51, 091609.

2

Sun, Y. W.; Sy, M. Y.; Wang, Y. X.; Ahuja, A. T.; Zhang, Y. T.; Pickwell-Macpherson, E. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy. World J. Radiol. 2011, 3, 55-65.

3

Planken, P. Microscopy: A terahertz nanoscope. Nature 2008, 456, 454-455.

4

Rutherglen, C.; Burke, P. Carbon nanotube radio. Nano Lett. 2007, 7, 3296-3299.

5

Vincent, P.; Poncharal, P.; Barois, T.; Perisanu, S.; Gouttenoire, V.; Frachon, H.; Lazarus, A.; de Langre, E.; Minoux, E.; Charles, M.; Ziaei, A.; Guillot, D.; Choueib, M.; Ayari, A.; Purcell, S. T. Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators. Phys. Rev. B 2011, 83, 155446.

6

Zhang, Z.; Li, T. Ultrafast nano-oscillators based on interlayer-bridged carbon nanoscrolls. Nanoscale. Res. Lett. 2011, 6, 470.

7

Zhu, Q.; Wang, R. Research on the possibility of nano-tube antenna. Antennas and Propagation Society International Symposium IEEE 2004, 2, 1927-1930.

8

Hanson, G. W. Fundamental transmitting troperties of carbon nanotube antennas. IEEE Trans. Nanotech. 2005, 53, 3426-3434.

9

Burke, P. J.; Li, S. D.; Yu, Z. Quantitative theory of nanowire and nanotube antenna performance. IEEE Trans. Nanotech. 2006, 5, 314-334.

10

Hao, J.; Hanson, G. W. Infrared and optical properties of carbon nanotube dipole antennas. IEEE Trans. Nanotech. 2006, 5, 766-775.

11

Lan, Y.; Zeng, B. Q.; Zhang, H.; Chen, B. R.; Yang, Z. H. Simulation of carbon nanotube THz antenna arrays. Int. J. Infrared. Millimet. Waves. 2006, 27, 871-877.

12

Wang, Y.; Kempa, K.; Kimball, B.; Carlson, J. B.; Benham, G.; Li, W. Z.; Kempa, T.; Rybczynski, J.; Herczynski, A.; Ren, Z. F. Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Appl. Phys. Lett. 2004, 85, 2607-2609.

13

Slepyan, G. Y.; Shuba, M. V.; Maksimenko, S. A.; Lakhtakia, A. Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantenna. Phys. Rev. B 2006, 73, 195416.

14

Maksimenko, S. A.; Slepyan, G. Y.; Nemilentsau, A. M.; Shuba, M. V. Carbon nanotube antenna: Far-field, near-field and thermal-noise properties. Physica E 2008, 40, 2360-2364.

15

Shuba, M. V.; Maksimenko, S. A.; Lakhtakia, A. Electromagnetic wave propagation in an almost circular bundle of closely packed metallic carbon nanotubes. Phys. Rev. B 2007, 76, 155407.

16

Shuba, M. V.; Slepyan, G. Y.; Maksimenko, S. A.; Thomsen, C.; Lakhtakia, A. Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes. Phys. Rev. B 2009, 79, 155403.

17

Kibis, O. V.; Portnoi, M. E. Carbon nanotubes: A new type of emitter in the terahertz range. Techn. Phys. Lett. 2005, 31, 671-672.

18

Reich, S.; Thomsen, C.; Maultzsch, J. Carbon Nanotubes: Basic Concepts and Physical Properties; Wiley-VCH: Weinheim, 2004.

19

Tonouchi, M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1, 97-105.

20

Slepyan, G. Y.; Shuba, M. V.; Maksimenko, S. A.; Thomsen, C.; Lakhtakia, A. Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment. Phys. Rev. B 2010, 81, 205423.

21

Su, H. B.; Goddard, W. A.; Zhao, Y. Dynamic friction force in a carbon peapod oscillator. Nanotechnology 2006, 17, 5691-5695.

22

Kwon, Y. K.; Tománek, D.; Iijima, S. "Bucky-shuttle" memory device: Synthetic approach and molecular dynamics simulations. Phys. Rev. Lett. 1999, 82, 1470-1473.

23

Talyzin, A. V.; Luzan, S. M.; Anoshkin, I. V.; Nasibulin, A. G.; Jiang, H.; Kauppinen, E. I. Hydrogen-driven collapse of C60 inside single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2012, 51, 4435-4439.

24

Pai, W. W.; Jeng, H. T.; Cheng, C. M.; Lin, C. H.; Xiao, X. D.; Zhao, A. D.; Zhang, X. Q.; Xu, G.; Shi, X. Q.; Van Hove, M. A. et al. Optimal electron doping of a C60 monolayer on Cu(111) via interface reconstruction. Phys. Rev. Lett. 2010, 104, 036103.

25

Glukhova, O. E. Dimerization of miniature C20 and C28 fullerenes in nanoautoclave. J. Mol. Model. 2011, 17, 573-576.

26

Landau, L. D.; Lifshitz, E. M. The Classical Theory of Fields; Pentagon Press: London, 1971.

27

Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular-dynamics with coupling to an external bath. Chem. Phys. 1984, 81, 3684-3690.

28

Lemak, A. S.; Balabaev, N. K. Molecular dynamics simulation of a polymer chain in solution by collisional dynamics method. J. Comput. Chem. 1996, 17, 1685-1695.

29

Noji, H.; Yasuda, R.; Yoshida, M.; Kinoshita, K. Direct observation of the rotation of F1-ATPase. Nature 1997, 386, 299-302.

30

Kataura, H.; Maniwa, Y.; Kodama, T.; Kikuchi, K.; Hirahara, K.; Iijima, S.; Suzuki, S.; Kratschmer, W.; Achiba, Y. Fullerene-peapods: Synthesis, structure, and Raman spectroscopy. AIP Conf. Proc. 2001, 591, 251-255.

31

Li, C. Z.; Chueh, C. C.; Ding, F. Z.; Yip, H. L.; Liang, P. W.; Li, X. S.; Jen, A. K. Y. Doping of fullerenes via anion-induced electron transfer and its implication for surfactant facilitated high performance polymer solar cells. Adv. Mater. 2013, 25, 4425-4430.

32

Sun, B. Y.; Sato, Y.; Suenaga, K.; Okazaki, T.; Kishi, N.; Sugai, T.; Bandow, S.; Iijima, S.; Shinohara, H. Entrapping of exohedral metallofullerenes in carbon nanotubes: (CsC60)n@SWNT nano-peapods. J. Am. Chem. Soc. 2005, 127, 17972-17973.

33

Kalbáč, M.; Kavan, L.; Zukalová, M.; Dunsch, L. Two positions of potassium in chemically doped C60 peapods: An in situ spectroelectrochemical study. J. Phys. Chem. B. 2004, 108, 6275-6280.

Nano Research
Pages 2595-2602
Cite this article:
Slepchenkov MM, Kolesnikova AS, Savostyanov GV, et al. Giga- and terahertz-range nanoemitter based on peapod structure. Nano Research, 2015, 8(8): 2595-2602. https://doi.org/10.1007/s12274-015-0764-4

715

Views

5

Crossref

N/A

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 19 December 2014
Revised: 03 March 2015
Accepted: 05 March 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return