Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The nanoscale core/shell heterostructure is a particularly efficient motif to combine the promising properties of plasmonic materials and rare-earth compounds; however, there remain significant challenges in the synthetic control due to the large interfacial energy between these two intrinsically unmatched materials. Herein, we report a synthetic route to grow rare-earth-vanadate shells on gold nanorod (AuNR) cores. After modifying the AuNR surface with oleate through a surfactant exchange, well-packaged rare-earth oxide (e.g., Gd2O3: Eu) shells are grown on AuNRs as a result of the multiple roles of oleate. Furthermore, the composition of the shell has been altered from oxide to vanadate (GdVO4: Eu) using an anion exchange method. Owing to the carefully designed strategy, the AuNR cores maintain the morphology during the synthesis process; thus, the final Au/GdVO4: Eu core/shell NRs exhibit strong absorption bands and high photothermal efficiency. In addition, the Au/GdVO4: Eu NRs exhibit bright Eu3+ fluorescence with quantum yield as high as ~17%; bright Sm3+ and Dy3+ fluorescence can also be obtained by changing the lanthanide doping in the oxide formation. Owing to the attractive integration of the plasmonic and fluorescence properties, such core/shell heterostructures will find particular applications in a wide array of areas, from biomedicine to energy.
Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740-2779.
Feng, D. Q.; Liu, G. L.; Zheng, W. J.; Liu, J.; Chen, T. F.; Li, D. A highly selective and sensitive on-off sensor for silver ions and cysteine by light scattering technique of DNA- functionalized gold nanoparticles. Chem. Commun. 2011, 47, 8557-8559.
Wang, F.; Li, C. H.; Chen, H. J.; Jiang, R. B.; Sun, L. D.; Li, Q.; Wang, J. F.; Yu, J. C.; Yan, C. H. Plasmonic harvesting of light energy for Suzuki coupling reactions. J. Am. Chem. Soc. 2013, 135, 5588-5601.
Jing, H.; Zhang, Q. F.; Large, N.; Yu, C. M.; Blom, D. A.; Nordlander, P.; Wang, H. Tunable plasmonic nanoparticles with catalytically active high-index facets. Nano Lett. 2014, 14, 3674-3682.
Green, M. A.; Pillai, S. Harnessing plasmonics for solar cells. Nat. Photonics 2012, 6, 130-132.
Kulkarni, A. P.; Noone, K. M.; Munechika, K.; Guyer, S. R.; Ginger, D. S. Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett. 2010, 10, 1501-1505.
Zeng, J.; Huang, J. L.; Liu, C.; Wu, C. H.; Lin, Y.; Wang, X. P.; Zhang, S. Y.; Hou, J. G.; Xia, Y. N. Gold-based hybrid nanocrystals through heterogeneous nucleation and growth. Adv. Mater. 2010, 22, 1936-1940.
Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. Au-ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660-5663.
Seh, Z. W.; Liu, S. H.; Zhang, S. Y.; Bharathi, M.; Ramanarayan, H.; Low, M.; Shah, K. W.; Zhang, Y. W.; Han, M. Y. Anisotropic growth of titania onto various gold nanostructures: Synthesis, theoretical understanding, and optimization for catalysis. Angew. Chem. Int. Ed. 2011, 50, 10140-10143.
Liu, X.; Lee, C.; Law, W. C.; Zhu, D. W.; Liu, M. X.; Jeon, M.; Kim, J.; Prasad, P. N.; Kim, C.; Swihart, M. T. Au- Cu2-xSe heterodimer nanoparticles with broad localized surface plasmon resonance as contrast agents for deep tissue imaging. Nano Lett. 2013, 13, 4333-4339.
Meng, X. G.; Fujita, K.; Moriguchi, Y.; Zong, Y. H.; Tanaka, K. Plasmonics: Metal-dielectric core-shell nanoparticles: Advanced plasmonic architectures towards multiple control of random lasers. Adv. Optical Mater. 2013, 1, 573-580.
Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Tailoring light- matter-spin interactions in colloidal hetero-nanostructures. Nature 2010, 466, 91-95.
Baek, S. W.; Park, G.; Noh, J.; Cho, C.; Lee, C. H.; Seo, M. K.; Song, H.; Lee, J. Y. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. ACS Nano 2014, 8, 3302-3312.
Zhang, L.; Blom, D. A.; Wang, H. Au-Cu2O core-shell nanoparticles: A hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem. Mater. 2011, 23, 4587-4598.
Li, B. X.; Gu, T.; Ming, T.; Wang, J. X.; Wang, P.; Wang, J. F.; Yu, J. C. (Gold core)@(ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light. ACS Nano, 2014, 8, 8152-8162.
Sun, Z. H.; Yang, Z.; Zhou, J. H.; Yeung, M. H.; Ni, W. H.; Wu, H. K.; Wang, J. F. A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures. Angew. Chem. Int. Ed. 2009, 48, 2881-2885.
Sun, H.; He, J. T.; Wang, J. Y.; Zhang, S. Y.; Liu, C. C.; Sritharan, T.; Mhaisalkar, S.; Han, M. Y.; Wang, D.; Chen, H. Y. Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. J. Am. Chem. Soc. 2013, 135, 9099-9110.
Zhang, J. T.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 2010, 327, 1634-1638.
Li, M.; Yu, X. F.; Liang, S.; Peng, X. N.; Yang, Z. J.; Wang, Y. L.; Wang, Q. Q. Synthesis of Au-CdS core-shell hetero- nanorods with efficient exciton-plasmon interactions. Adv. Funct. Mater. 2011, 21, 1788-1794.
Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343-2389.
Wang, F.; Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res. 2014, 47, 1378-1385.
Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322-332.
Chen, G. Y.; Yang, C. H.; Prasad, P. N. Nanophotonics and nanochemistry: Controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles. Acc. Chem. Res. 2013, 46, 1474-1486.
Wu, S. W.; Han, G.; Milliron, D. J.; Aloni, S.; Altoe, V.; Talapin, D. V.; Cohen, B. E.; Schuck, P. J. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl. Acad. Sci. USA 2009, 106, 10917-10921.
Huignard, A.; Gacoin, T.; Boilot, J. P. Synthesis and luminescence properties of colloidal YVO4: Eu phosphors. Chem. Mater. 2000, 12, 1090-1094.
Han, S. Y.; Deng, R. R.; Xie, X. J.; Liu, X. G. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Ed. 2014, 53, 11702-11715.
Kannan, P.; Abdul Rahim, F.; Chen, R.; Teng, X.; Huang, L.; Sun, H. D.; Kim, D. H. Au nanorod decoration on NaYF4: Yb/ Tm nanoparticles for enhanced emission and wavelength- dependent biomolecular sensing. ACS Appl. Mater. Interfaces 2013, 5, 3508-3513.
Zhang, H.; Li, Y. J.; Ivanov, I. A.; Qu, Y. Q.; Huang, Y.; Duan, X. F. Plasmonic modulation of the upconversion fluorescence in NaYF4: Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 2010, 49, 2865-2868.
Li, Z. Q.; Wang, L. M.; Wang, Z. Y.; Liu, X. H.; Xiong, Y. J. Modification of NaYF4: Yb, Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions. J. Phys. Chem. C 2011, 115, 3291-3296.
Zhang, C.; Lee, J. Y. Synthesis of Au nanorod@amine- modified silica@rare-earth fluoride nanodisk core-shell-shell heteronanostructures. J. Phys. Chem. C 2013, 117, 15253- 15259.
Zhang, F.; Braun, G. B.; Shi, Y. F.; Zhang, Y. C.; Sun, X. H.; Reich, N. O.; Zhao, D. Y.; Stucky, G. Fabrication of Ag@SiO2@Y2O3: Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 2850-2851.
Bao, L. Y.; Li, Z. Q.; Tao, Q. L.; Xie, J. J.; Mei, Y. Y.; Xiong, Y. J. Controlled synthesis of uniform LaF3 polyhedrons, nanorods and nanoplates using NaOH and ligands. Nanotechnology 2013, 24, 145604.
Xu, Z. H.; Kang, X. J.; Li, C. X.; Hou, Z. Y.; Zhang, C. M.; Yang, D. M.; Li, G. G.; Lin, J. Ln3+ (Ln = Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: Hydrothermal synthesis, growing mechanism, and luminescent properties. Inorg. Chem. 2010, 49, 6706- 6715.
Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679-2724.
Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957-1962.
Liu, G. Z.; Conn, C. E.; Drummond, C. J. Lanthanide oleates: Chelation, self-assembly, and exemplification of ordered nanostructured colloidal contrast agents for medical imaging. J. Phys. Chem. B 2009, 113, 15949-15959.
Murakami, T.; Nakatsuji, H.; Morone, N.; Heuser, J. E.; Ishidate, F.; Hashida, M.; Imahori, H. Mesoscopic metal nanoparticles doubly functionalized with natural and engineered lipidic dispersants for therapeutics. ACS Nano, 2014, 8, 7370-7376.
Ye, X. C.; Gao, Y. Z.; Chen, J.; Reifsnyder, D. C.; Zheng, C.; Murray, C. B. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures. Nano Lett. 2013, 13, 2163-2171.
Raiser, D.; Deville, J. Study of XPS photoemission of some gadolinium compounds. J. Electron Spectrosc. Relat. Phenom. 1991, 57, 91-97.
Zhang, F.; Shi, Y. F.; Sun, X. H.; Zhao, D. Y.; Stucky, G. D. Formation of hollow upconversion rare-earth fluoride nanospheres: Nanoscale Kirkendall effect during ion exchange. Chem. Mater. 2009, 21, 5237-5243.
Jia, Y.; Sun, T. Y.; Wang, J. H.; Huang, H.; Li, P. H.; Yu, X. F.; Chu, P. K. Synthesis of hollow rare-earth compound nanoparticles by a universal sacrificial template method. CrystEngComm 2014, 16, 6141-6148.
Wang, F.; Xue, X. J.; Liu, X. G. Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation. Angew. Chem. Int. Ed. 2008, 47, 906-909.
Shen, J.; Sun, L. D.; Zhu, J. D.; Wei, L. H.; Sun, H. F.; Yan, C. H. Biocompatible bright YVO4: Eu nanoparticles as versatile optical bioprobes. Adv. Funct. Mater. 2010, 20, 3708-3714.
Liu, T.; Bai, X.; Miao, C.; Dai, Q. L.; Xu, W.; Yu, Y.; Chen, Q. D.; Song, H. W. Yb2O3/Au upconversion nanocomposites with broad-band excitation for solar cells. J. Phys. Chem. C, 2014, 118, 3258-3265.
Chen, X.; Xu, W.; Zhu, Y. S.; Zhou, P. W.; Cui, S. B.; Tao, L.; Xu, L.; Song, H. W. Nd2O3/Au nanocomposites: Upconversion broadband emission and enhancement under near-infrared light excitation. J. Mater. Chem. C 2014, 2, 5857-5863.
Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636-3641.
Huignard, A.; Buissette, V.; Franville, A. C.; Gacoin, T.; Boilot, J. P. Emission processes in YVO4: Eu nanoparticles. J. Phys. Chem. B 2003, 107, 6754-6759.
Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414-6420.
Orendorff, C. J.; Murphy, C. J. Quantitation of metal content in the silver-assisted growth of gold nanorods. J. Phys. Chem. B 2006, 110, 3990-3994.
Wang, B. K.; Wang, J. H.; Liu, Q.; Huang, H.; Chen, M.; Li, K. Y.; Li, C. Z.; Yu, X. F.; Chu, P. K. Rose-bengal- conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 2014, 35, 1954-1966.
Kömpe, K.; Borchert, H.; Storz, J.; Lobo, A.; Adam, S.; Möller, T.; Haase, M. Green-emitting CePO4: Tb/LaPO4 core- shell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem. Int. Ed. 2003, 42, 5513-5516.