AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Flow-induced voltage generation in graphene network

Junchao Lao1,2,§Yijia He2,3,§Xiao Li3Fuzhang Wu1,2Tingting Yang2,3Miao Zhu2,3Yangyang Zhang3Pengzhan Sun3Zhen Zhen2,3Baochang Cheng1Hongwei Zhu2,3( )
Institute for Advanced StudyNanchang UniversityNanchang330031China
Center for Nano and Micro MechanicsTsinghua UniversityBeijing100084China
School of Materials Science and EngineeringState Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijing100084China

§ These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

We report a voltage generator based on a graphene network (GN). In response to the movement of a droplet of ionic solution over a GN strip, a voltage of several hundred millivolts is observed under ambient conditions. In the voltage-generation process, the unique structure of GN plays an important role in improving the rate of electron transfer. Given their excellent mechanical properties, GNs may find applications for harvesting vibrational energy in various places such as raincoats, umbrellas, windows, and other surfaces that are exposed to rain.

Electronic Supplementary Material

Download File(s)
12274_2015_754_MOESM1_ESM.pdf (939.9 KB)

References

1

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.

2

Hong, W. J.; Bai, H.; Xu, Y. X.; Yao, Z. Y.; Gu, Z. Z.; Shi, G. Q. Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J. Phys. Chem. C 2010, 114, 1822-1826.

3

Choi, B. G.; Park, H. S.; Park, T. J.; Yang, M. H.; Kim, J. S.; Jang, S. Y.; Heo, N. S.; Lee, S. Y.; Kong, J.; Hong, W. H. Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors. ACS Nano 2010, 4, 2910-2918.

4

Li, X.; Zhang, R. J.; Yu, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q. S.; et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870.

5

Wang, Y.; Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 2011, 5, 3645-3650.

6

Boland, C. S.; Khan, U.; Backes, C.; O'Neill, A.; McCauley, J.; Duane, S.; Shanker, R.; Liu, Y.; Jurewicz, I.; Dalton, A. B.; et al. Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 2014, 8, 8819-8830.

7

Kang, C. G.; Lee, S. K.; Yoo, T. J.; Park, W.; Jung, U.; Ahn, J.; Lee, B. H. Highly sensitive wide bandwidth photodetectors using chemical vapor deposited graphene. Appl. Phys. Lett. 2014, 104, 161902.

8

Liu, Y.; Cheng, R.; Liao, L.; Zhou, H. L.; Bai, J. W.; Liu, G.; Liu, L. X.; Huang, Y.; Duan, X. F. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579.

9

Chitara, B.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv. Mater. 2011, 23, 5419-5424.

10

Urich, A.; Unterrainer, K.; Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 2011, 11, 2804-2808.

11

Miao, X. C.; Tongay, S.; Petterson, M. K.; Berke, K.; Rinzler, A. G.; Appleton, B. R.; Hebard, A. F. High efficiency graphene solar cells by chemical doping. Nano Lett. 2012, 12, 2745- 2750.

12

Yang, H. B.; Guai, G. H.; Guo, C. X.; Song, Q. L.; Jiang, S. P.; Wang, Y. L.; Zhang, W.; Li, C. M. NiO/graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell. J. Phys. Chem. C 2011, 115, 12209-12215.

13

Park, H.; Rowehl, J. A.; Kim, K. K.; Bulovic, V.; Kong, J. Doped graphene electrodes for organic solar cells. Nanotechnology 2010, 21, 505204.

14

Jia, Y.; Cao, A. Y.; Bai, X.; Li, Z.; Zhang, L. H.; Guo, N.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H.; et al. Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett. 2011, 11, 1901-1905.

15

Li, X. M.; Zhu, H. W.; Wang, K. L.; Cao, A. Y.; Wei, J. Q.; Li, C. Y.; Jia, Y.; Li, Z.; Li, X.; Wu, D. H. Graphene-on- silicon Schottky junction solar cells. Adv. Mater. 2010, 22, 2743-2748.

16

Yuan, Q. Z.; Zhao, Y. P. Hydroelectric voltage generation based on water-filled single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 6374-6376.

17

Zhao, Y. C.; Song, L.; Deng, K.; Liu, Z.; Zhang, Z. X.; Yang, Y. L.; Wang, C.; Yang, H. F.; Jin, A. Z.; Luo, Q.; et al. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters. Adv. Mater. 2008, 20, 1772-1776.

18

Lee, S. H.; Jung, Y.; Kim, S.; Han, C. S. Flow-induced voltage generation in non-ionic liquids over monolayer graphene. Appl. Phys. Lett. 2013, 102, 063116.

19

Li, X. M.; Yin, J.; Zhou, J. X.; Wang, Q.; Guo, W. L. Exceptional high Seebeck coefficient and gas-flow-induced voltage in multilayer graphene. Appl. Phys. Lett. 2012. 100, 183108.

20

Yin, J.; Li, X. M.; Yu, J.; Zhang, Z. H.; Zhou, J. X.; Guo, W. L. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 2014, 9, 378-383.

21

Li, X.; Sun, P. Z.; Fan, L. L.; Zhu, M.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Cheng, Y.; Zhu, H. W. Multifunctional graphene woven fabrics. Sci. Rep. 2012, 2, 395.

22

Lee, X.; Yang, T. T.; Li, X.; Zhang, R. J.; Zhu, M.; Zhang, H. Z.; Xie, D.; Wei, J. Q.; Zhong, M. L.; Wang, K. L.; et al. Flexible graphene woven fabrics for touch sensing. Appl. Phys. Lett. 2013. 102, 163117.

23

Mattevi, C.; Kim, H.; Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 2011. 21, 3324-3334.

24

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.

25

Li, W. W.; Gao, S.; Wu, L. Q.; Qiu, S. Q.; Guo, Y. F.; Geng, X. M.; Chen, M. L.; Liao, S. T.; Zhu, C.; Gong, Y. P.; et al. High-density three-dimension graphene macroscopic objects for high-capacity removal of heavy metal ions. Sci. Rep. 2013, 3, 2125.

26

Choi, B. G.; Yang, M. H.; Hong, W. H.; Choi, J. W.; Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012, 6, 4020-4028.

27

Yin, S. Y.; Zhang, Y. Y.; Kong, J. H.; Zou, C. J.; Li, C. M.; Lu, X. H.; Ma, J.; Boey, F. Y. C.; Chen, X. D. Assembly of graphene sheets into hierarchical structures for high- performance energy storage. ACS Nano 2011, 5, 3831-3838.

28

Li, X.; Zang, X. B.; Li, X. M.; Zhu, M.; Chen, Q.; Wang, K. L.; Zhong, M. L.; Wei, J. Q.; Wu, D. H.; Zhu, H. W. Hybrid heterojunction and solid-state photoelectrochemical solar cells. Adv. Energy Mater. 2014, 4, 1400224.

29

Zang, X. B.; Chen, Q.; Li, P. X.; He, Y. J.; Li, X.; Zhu, M.; Li, X. M.; Wang, K. L.; Zhong, M. L.; Wu, D. H.; et al. Highly flexible and adaptable, all-solid-state supercapacitors based on graphene woven-fabric film electrodes. Small 2014, 10, 2583-2588.

30

Yang, T. T.; Wang, Y.; Li, X. M.; Zhang, Y. Y.; Li, X.; Wang, K. L.; Wu, D. H.; Jin, H.; Li, Z. H.; Zhu, H. W. Torsion sensors of high sensitivity and wide dynamic range based on a graphene woven structure. Nanoscale 2014, 6, 13053-13059.

Nano Research
Pages 2467-2473
Cite this article:
Lao J, He Y, Li X, et al. Flow-induced voltage generation in graphene network. Nano Research, 2015, 8(8): 2467-2473. https://doi.org/10.1007/s12274-015-0754-6

642

Views

29

Crossref

N/A

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 08 January 2015
Revised: 07 February 2015
Accepted: 19 February 2015
Published: 29 August 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return