Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Theoretical physics foretells that "strain engineering" of graphene could hold the key to finding treasures still hidden in two-dimensional (2D) condensed matter physics and commercializing graphene-based devices. However, to produce strained graphene in large quantities is not an easy task by any means. Here, we demonstrate that thermal annealing of graphene placed on various substrates could be a surprisingly simple method for preparing strained graphene with a large area. We found that enhanced graphene-substrate interfacial adhesion plays a critical role in developing strained graphene. Creative device architectures that consider the thermal mismatch between graphene and the target substrate could enable the resulting strain to be intentionally tailored. We believe that our proposed method could suggest a shortcut to realization of graphene straintronics.
Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.
Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192-200.
Maiti, C. K.; Armstrong, G. A. Applications of Silicon Germanium Heterostructure Devices; Institute of Physics Publishing (IOP): London, 2002.
Thompson, S. E.; Armstrong, M.; Auth, C.; Cea, S.; Chau, R.; Glass, G.; Hoffman, T.; Klaus, J.; Ma, Z. Y.; McIntyre, B.; et al. A logic nanotechnology featuring strained-silicon. IEEE Electron Dev. Lett. 2004, 24, 191-193.
Pereira, V. M.; Castro Neto, A. H.; Peres, N. M. R. Tight- binding approach to uniaxial strain in graphene. Phys. Rev. B 2009, 80, 045401.
Ribeiro, R. M.; Pereira, V. M.; Peres, N. M. R.; Briddon, P. R.; Castro Neto, A. H. Strained graphene: Tight-binding and density functional calculations. New J. Phys. 2009, 11, 115002.
Pereira, V. M.; Castro Neto, A. H. Strain engineering of graphene's electronic structure. Phys. Rev. Lett. 2009, 103, 046801.
Cocco, G.; Cadelano, E.; Colombo, L. Gap opening in graphene by shear strain. Phys. Rev. B 2010, 81, 241412.
Choi, S. -M.; Jhi, S. -H.; Son, Y. -W. Effects of strain on electronic properties of graphene. Phys. Rev. B 2010, 81, 081407.
Li, Y.; Jiang, X. W.; Liu, Z. F.; Liu, Z. R. Strain effects in graphene and graphene nanoribbons: The underlying mechanism. Nano Res. 2010, 3, 545-556.
Lee, J. -K.; Yamazaki, S.; Yun, H.; Park, J.; Kennedy, G. P.; Kim, G. Pietzsch, O.; Wiesendanger, R.; Lee, S.; Hong, S.; et al. Modification of electrical properties of graphene by substrate-induced nanomodulation. Nano Lett. 2013, 13, 3494-3500.
Chen, J; Walther, J. H.; Koumoutsakos, P. Strain engineering of Kapitza resistance in few-layer graphene. Nano Lett. 2014, 14, 819-825.
Guinea, F.; Katsnelson, M. I.; Geim, A. K. Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 2009, 6, 30-33.
Levy, N.; Burke, S. A.; Meaker, K. L.; Panlasigui, M.; Zettl, A.; Guinea, F.; Neto, A. H. C.; Crommie, M. F. Strain- induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 2010, 329, 544-547.
Li, X.; Zhang, R. J.; Yu, W. J.; Wang, K. L.; Wei, J. Q.; Wu, D. H.; Cao, A. Y.; Li, Z. H.; Cheng, Y.; Zheng, Q. S.; et al. Stretchable and highly sensitive graphene-on-polymer strain sensors. Sci. Rep. 2012, 2, 870.
Bao, W. Z.; Miao, F.; Chen, Z.; Zhang, H.; Jang, W.; Dames, C.; Lau, C. N. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 2009, 4, 562-566.
Meng, L.; Su, Y.; Geng, D. C.; Yu, G.; Liu, Y. Q.; Dou, R. -F.; Nie, J. -C.; He, L. Hierarchy of graphene wrinkles induced by thermal strain engineering. Appl. Phys. Lett. 2013, 103, 251610.
Bai, K. -K.; Zhou, Y.; Zheng, H.; Meng, L.; Peng, H. L.; Liu, Z. F.; Nie, J. -C.; He, L. Creating one-dimensional nanoscale periodic ripples in a continuous mosaic graphene monolayer. Phys. Rev. Lett. 2014, 113, 086102.
Tapasztó, L.; Dumitrică, T. Kim, S. J.; Nemes-Incze, P. Hwang, C.; Biró, L. P. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat. Phys. 2012, 8, 739-742.
Shioya, H.; Craciun, M. F.; Russo, S.; Yamamoto, M.; Tarucha, S. Straining graphene using thin film shrinkage methods. Nano Lett. 2014, 14, 1158-1163.
Yoon, D; Son, Y. -W.; Cheong, H. Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 2011, 11, 3227-3231.
Leterrier, Y. Durability of nanosized oxygen-barrier coatings on polymers. Prog. Mater. Sci. 2003, 48, 1-55.
Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Appl. Phys. Lett. 2011, 99, 122108.
Kumar, K.; Kim, Y. -S.; Yang, E. -H. The influence of thermal annealing to remove polymeric residue on the electronic doping and morphological characteristics of graphene. Carbon 2013, 65, 35-45.
Lee, C.; Li, Q. Y.; Kalb, W.; Liu, X. -Z.; Berger, H.; Carpick, R. W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76-80.
Mohiuddin, T. M. G.; Lombardo, A.; Nair, R. R.; Bonetti, A.; Savini, G.; Jalil, R.; Bonini, N.; Basko, D. M.; Galiotis, C.; Marzari, N.; et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 2009, 79, 205433.
Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210-215.
Proctor, J. E.; Gregoryanz, E.; Novoselov, K. S.; Lotya, M.; Coleman, J. N.; Halsall, M. P. High-pressure Raman spectroscopy of graphene. Phys. Rev. B 2009, 80, 073408.
Zabel, J.; Nair, R. R.; Ott, A.; Georgiou, T.; Geim, A. K.; Novoselov, K. S.; Casiraghi, C. Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons. Nano Lett. 2012, 12, 617-621.
Jie, W. J.; Hui, Y. Y.; Zhang, Y.; Lau, S. P.; Hao, J. H. Effects of controllable biaxial strain on the Raman spectra of monolayer graphene prepared by chemical vapor deposition. Appl. Phys. Lett. 2013, 102, 223112.
Ferralis, N.; Maboudian, R.; Carraro, C. Evidence of structural strain in epitaxial graphene layers on 6H-SiC(0001). Phys. Rev. Lett. 2008, 101, 156801.
Mounet, N.; Marzari, N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives. Phys. Rev. B 2005, 71, 205214.
Ni, Z. H.; Wang, H. M.; Ma, Y.; Kasim, J.; Wu, Y. H.; Shen, Z. X. Tunable stress and controlled thickness modification in graphene by annealing. ACS Nano 2008, 2, 1033-1039.
Hong, J.; Park, M. K.; Lee, E. J.; Lee, D.; Hwang, D. K.; Ryu, S. Origin of new broad Raman D and G peaks in annealed graphene. Sci. Rep. 2013, 3, 2700.
Jansen, F.; Machonkin, M. A.; Palmieri, N.; Kuhman, D. Thermomechanical properties of amorphous silicon and nonstoichiometric silicon oxide films. J. Appl. Phys. 1987, 62, 4732.
Phung, T. M.; Johnson, D. C.; Antonelli, G. A. A detailed experimental and analytical study of the thermal expansion of dielectric thin films on Si by x-ray reflectivity. J. Appl. Phys. 2006, 100, 064317.
Singh, S. K.; Neek-Amal, M.; Costamagna, S.; Peeters, F. M. Thermomechanical properties of a single hexagonal boron nitride sheet. Phys. Rev. B 2013, 87, 184106.
Miller, D. C.; Foster, R. R.; Jen, S. -H.; Bertrand, J. A.; Cunningham, S. J.; Morris, A. S.; Lee, Y. C.; George, S. M.; Dunn, M. L. Thermo-mechanical properties of alumina films created using the atomic layer deposition technique. Sens. Actuators A-Phys. 2010, 164, 58-67.
Bikiaris, D. N.; Karayannidis, G. P. Thermomechanical analysis of chain-extended PET and PBT. J. Appl. Polym. Sci. 1996, 60, 55-61.
Ni, G. -X.; Yang, H. -Z.; Ji, W.; Baeck, S. -J.; Toh, C. -T.; Ahn, J. -H.; Pereira, V. M.; Özyilmaz, B. Tuning optical conductivity of large-scale CVD graphene by strain engineering. Adv. Mater. 2014, 26, 1081-1086.
Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389-393.