Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Single-crystalline hematite (α-Fe2O3) nanorings (short nanotubes) and nanotubes were synthesized by a hydrothermal method. High-resolution transmission electron microscopy and selected-area electron diffraction confirm that the axial directions of both the nanorings and nanotubes are parallel to the crystalline c-axis. Intriguingly, the Morin transition occurs at about 210 K in the short nanotubes with a mean tube length of about 115 nm and a mean outer diameter of about 169 nm. However, it does not occur in the nanotubes with a mean tube length of about 317 nm and a mean outer diameter of about 148 nm. Detailed analysis of magnetization data, X-ray diffraction patterns, and room-temperature Mössbauer spectra demonstrates that this very strong shape-dependence of Morin transition is intrinsic to hematite. We explain this intriguing shape-dependence quantitatively, in terms of the opposite signs of the surface magnetic anisotropy constants of the surface planes parallel and perpendicular to the c-axis.
Morin, F. J. Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium. Phys. Rev. 1950, 78, 819-820.
Besser, P. J.; Morrish, A. H. Spin flopping in synthetic hematite crystals. Phys. Lett. 1964, 13, 289-290.
Foner, S.; Williamson, S. Low-temperature antiferromagnetic resonance in α-Fe2O3. J. Appl. Phys. 1965, 36, 1154-1156.
Hirone, T. Magnetic studies at the research institute for iron, steel and other metals. J. Appl. Phys. 1965, 36, 988-992.
Flanders, P. J.; Shtrikman, S. Magnetic field induced antiferromagnetic to weak ferromagnetic transitions in hematite. Solid State Commun. 1965, 3, 285-288.
Dzyaloshinsky, I. A thermodynamic theory of "weak" ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241-255.
Huang, F.; Mankey, G.; Kief, M.; Willis, R. Finite-size scaling behavior of ferromagnetic thin films. J. Appl. Phys. 1993, 73, 6760-6762.
Li, Y.; Baberschke, K. Dimensional crossover in ultrathin Ni(111) films on W(110). Phys. Rev. Lett. 1992, 68, 1208-1211.
Elmers, H.; Hauschild, J.; Höche, H.; Gradmann, U.; Bethge, H.; Heuer, D.; Köhler, U. Submonolayer magnetism of Fe(110) on W(110): Finite width scaling of stripes and percolation between islands. Phys. Rev. Lett. 1994, 73, 898-901.
Schneider, C.; Bressler, P.; Schuster, P.; Kirschner, J.; de Miguel, J.; Miranda, R. Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically flat Cu(100) surfaces. Phys. Rev. Lett. 1990, 64, 1059-1062.
Tang, Z. X.; Sorensen, C.; Klabunde, K.; Hadjipanayis, G. Size-dependent Curie temperature in nanoscale MnFe2O4 particles. Phys. Rev. Lett. 1991, 67, 3602-3605.
Du, Y. -W.; Xu, M. -X.; Wu, J.; Shi, Y. -B.; Lu, H. -X.; Xue, R. -H. Magnetic properties of ultrafine nickel particles. J. Appl. Phys. 1991, 70, 5903-5905.
Wang, J.; Wu, W.; Zhao, F.; Zhao, G. -M. Curie temperature reduction in SiO2-coated ultrafine Fe3O4 nanoparticles: Quantitative agreement with a finite-size scaling law. Appl. Phys. Lett. 2011, 98, 083107.
Wang, J.; Wu, W.; Zhao, F.; Zhao, G. -M. Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model. Phys. Rev. B 2011, 84, 174440.
Wang, J.; Zhao, F.; Wu, W.; Zhao, G. -M. Finite-size scaling relation of the Curie temperature in barium hexaferrite platelets. J. Appl. Phys. 2011, 110, 123909.
Fisher, M. E.; Barber, M. N. Scaling theory for finite-size effects in the critical region. Phys. Rev. Lett. 1972, 28, 1516-1519.
Schroeer, D.; Nininger, R. Morin transition in α-Fe2O3 microcyrstals. Phys. Rev. Lett. 1967, 19, 632-635.
Gallagher, P.; Gyorgy, E. Morin transition and lattice spacing of hematite as a function of particle size. Phys. Rev. 1969, 180, 622-623.
Muench, G.; Arajs, S.; Matijević, E. The Morin transition in small α-Fe2O3 particles. Phys. Status Solidi A-Appl. Mat. 1985, 92, 187-192.
Morrish, A. H. Canted antiferromagnetism: Hematite; World Scientific: Singapore, 1994.
Bødker, F.; Hansen, M. F.; Koch, C. B.; Lefmann, K.; Mørup, S. Magnetic properties of hematite nanoparticles. Phys. Rev. B 2000, 61, 6826-6838.
Mitra, S.; Das, S.; Basu, S.; Sahu, P.; Mandal, K. Shape-and field-dependent Morin transitions in structured α-Fe2O3. J. Magn. Magn. Mater. 2009, 321, 2925-2931.
Jia, C. -J.; Sun, L. -D.; Luo, F.; Han, X. -D.; Heyderman, L. J.; Yan, Z. -G.; Yan, C. -H.; Zheng, K.; Zhang, Z.; Takano, M.; et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 2008, 130, 16968-16977.
Bacri, J. -C.; Perzyenski, R.; Salin, D. Magnetic colloidal properties of ionic ferrofluids. J. Magn. Magn. Mater. 1986, 62, 36-46.
Hill, A.; Jiao, F.; Bruce, P.; Harrison, A.; Kockelmann, W.; Ritter, C. Neutron diffraction study of mesoporous and bulk hematite, α-Fe2O3. Chem. Mater. 2008, 20, 4891-4899.
Williamson, G.; Hall, W. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22-31.
Smith, C. S.; Stickley, E. E. The width of X-ray diffraction lines from cold-worked tungsten and α-brass. Phys. Rev. 1943, 64, 191-198.
Fleischer, I.; Agresti, D. G.; Klingelhöfer, G.; Morris, R. V. Distinct hematite populations from simultaneous fitting of Mössbauer spectra from Meridiani Planum, Mars. J. Geo. Res. 2010, 115, E00F06.
Gradmann, U.; Bergholz, R.; Bergter, E. Magnetic surface anisotropies of Ni. IEEE Trans. Magn. 1984, 20, 1840-1845.
Chappert, C.; Le Dang, K.; Beauvillain, P.; Hurdequint, H.; Renard, D. Ferromagnetic resonance studies of very thin cobalt films on a gold substrate. Phys. Rev. B 1986, 34, 3192-3197.
Artman, J.; Murphy, J.; Foner, S. Magnetic anisotropy in antiferromagnetic corundum-type sesquioxides. Phys. Rev. 1965, 138, A912-A917.