Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Applications of ZnO nanomaterials in optoelectronics are still limited due to their insufficient photoluminescence efficiency. In order to optimize the photoluminescence properties of ZnO nanorods, the UV emission of vertically aligned ZnO nanorods grown on a Si substrate, in correlation with Ga+ ion irradiation at different ion energies (0.5 keV-16 keV), was investigated in the present study. We found that the UV intensity increased rapidly with increasing Ga+ ion energy, up to its maximum around 2 keV, at which point the intensity was approximately 50 times higher than that produced by as-grown ZnO nanorods. The gentle bombardment of low-energy Ga+ ions removes defects from ZnO nanorod surfaces. The Ga+ ions, on the other hand, implant into the nanorods, resulting in compressive strain. It is believed that the perfect arrangement of the crystal lattice upon removal of surface defects and the introduction of compressive strain are two factors that contribute to the significant enhancement of UV light generation.
Tang, Z. K.; Wong, G. K. L.; Yu, P.; Kawasaki, M.; Ohtomo, A.; Koinuma, H.; Segawa, Y. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl. Phys. Lett. 1998, 72, 3270-3272.
Zhang, B. P.; Binh, N. T.; Wakatsuki, K.; Segawa, Y.; Yamada, Y.; Usami, N.; Kawasaki, M.; Koinuma, H. Formation of highly-aligned ZnO tubes on sapphire (0001) substrates. Appl. Phys. Lett. 2004, 84, 4098-4100.
Zeng, H. B.; Duan, G. T.; Li, Y.; Yang, S. K.; Xu, X. X.; Cai, W. P. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Adv. Funct. Mater. 2010, 20, 561-572.
Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.
Kim, T. W.; Kawazoe, T.; Yamazaki, S.; Ohtsu, M.; Sekiguchi, T. Low-temperature orientation-selective growth and ultraviolet emission of single-crystal ZnO nanowires. Appl. Phys. Lett. 2004, 84, 3358-3360.
Yadian, B.; Liu, H.; Wei, Y. F.; Wu, J. S.; Zhang, S.; Sun, L. F.; Zhao, C. W.; Liu, Q.; Ramanujan, R. V.; Zhou, K. et al. Towards perfectly ordered novel ZnO/Si nano-heterojunction arrays. Small 2014, 10, 344-348.
Yang, Y.; Tay, B. K.; Sun, X. W.; Sze, J. Y.; Han, Z. J.; Wang, J. X.; Zhang, X. H.; Li, Y. B.; Zhang, S. Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation. Appl. Phys. Lett. 2007, 91, 071921.
Yang, Y.; Sun, X. W.; Tay, B. K.; Cao, P. H. T.; Wang, J. X.; Zhang, X. H. Revealing the surface origin of green band emission from ZnOnanostructures by plasma immersion ion implantation induced quenching. Appl. Phys. 2008, 103, 064307.
Lin, C. C.; Chen, H. P.; Liao, H. C.; Chen, S. Y. Enhanced luminescent and electrical properties of hydrogen-plasma ZnO nanorods grown on wafer-scale flexible substrates. Appl. Phys. Lett. 2005, 86, 183103.
Chen, R.; Ye, Q. L.; He, T. C.; Wu, T.; Sun, H. D. Uniaxial tensile strain and exciton-phonon coupling in bent ZnO nanowires. Appl. Phys. Lett. 2011, 98, 241916.
Chen, R.; Ye, Q. L.; He, T. C.; Ta, V. D.; Ying, Y. J.; Tay, Y. Y.; Wu, T.; Sun, H. D. Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core-shell nanowires. Nano Lett. 2013, 13, 734-739.
Hwang, S. W.; Shin, D. H.; Kim, C. O.; Hong, S. H.; Kim, M. C.; Kim, J.; Lim, K. Y.; Kim, S.; Choi, S. H.; Ahn, K. J. et al. Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films. Phys. Rev. Lett. 2010, 105, 127403.
Shao, D. L.; Sun, H. T.; Yu, M. P.; Lian, J.; Sawyer, S. Enhanced ultraviolet emission from poly(vinyl alcohol) ZnO nanoparticles using a SiO2-Au core/shell structure. Nano Lett. 2012, 12, 5840-5844.
Richters, J. P.; Voss, T.; Wischmeier, L.; Ruckmann, I.; Gutowski, J. Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires. Appl. Phys. Lett. 2008, 92, 011103.
Liu, K. W.; Chen, R.; Xing, G. Z.; Wu, T.; Sun, H. D. Photoluminescence characteristics of high quality ZnO nanowiresand its enhancement by polymer covering. Appl. Phys. Lett. 2010, 96, 023111.
Liu, M. N.; Chen, R.; Adamo, G.; MacDonald, K. F.; Sie, E. J.; Sum, T. C.; Zheludev, N. I.; Sun, H. D.; Fan, H. J. Tuning the influence of metal nanoparticles on ZnO photoluminescence by atomic-layer-deposited dielectric spacer. Nanophotonics 2013, 2, 153-160.
Lin, K. F.; Cheng, H. M.; Hsu, H. C.; Lin, L. J.; Hsieh, W. F. Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method. Chem. Phys. Lett. 2005, 409, 208-211.
Yang, Y. L.; Yan, H. W.; Fu, Z. P.; Yang, B. F.; Xia, L. S.; Xu, Y. D.; Zuo, J.; Lu, F. Q. Photoluminescence investigation based on laser heating effect in ZnO-ordered nanostructures. J. Phys. Chem. B 2005, 110, 846-852.
Yan, B.; Chen, R.; Zhou, W. W.; Zhang, J. X.; Sun, H. D.; Gong, H.; Yu, T. Localized suppression of longitudinal-optical-phonon-exciton coupling in bent ZnO nanowires. Nanotechnology 2010, 21, 445706.
Voss, T.; Bekeny, C.; Wischmeier, L.; Gafsi, H.; Borner, S.; Schade, W.; Mofor, A. C.; Bakin, A.; Waag, A. Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires. Appl. Phys. Lett. 2006, 89, 182107.
Yang, Y.; Sun, X. W.; Tay, B. K.; Cao, P. H. T.; Wang, J. X.; Zhang, X. H. Revealing the surface origin of green band emission from ZnO nanostructures by plasma immersion ion implantation induced quenching. J. Appl. Phys. 2008, 103, 064307.
Rosenberg, R. A.; Abu Haija, M.; Vijayalakshmi, K.; Zhou, J.; Xu, S.; Wang, Z. L. Depth resolved luminescence from oriented ZnO nanowires. Appl. Phys. Lett. 2009, 95, 243101.
Shalish, I.; Temkin, H.; Narayanamurti, V. Size-dependent surface luminescence in ZnO nanowires. Phys. Rev. B 2004, 69, 245401.
Yang, Q.; Wang, W. H.; Xu, S.; Wang, Z. L. Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic Effect. Nano Lett. 2011, 11, 4012-4017.
Shi, L. B.; Cheng, S.; Li, R. B.; Kang, L.; Jin, J. W.; Li, M. B.; Xu, C. Y. A study on strain affecting electronic structure of Wurtzite ZnO by first principles. Mod. Phys. Lett. B 2009, 23, 2339-2352.
Bhosle, V.; Tiwari, A.; Narayan, J. Metallic conductivity and metal-semiconductor transition in Ga-doped ZnO. Appl. Phys. Lett. 2006, 88, 032106.
Ilican, S.; Caglar, Y.; Caglar, M.; Yakuphanoglu, F. Structural, optical and electrical properties of F-doped ZnO nanorod semiconductor thin films deposited by sol-gel process. Appl. Surf. Sci. 2008, 255, 2353-2359.
Hou, Q. Y.; Zhao, C. W.; Jin, Y. J.; Guan, Y. Q.; Lin, L.; Li, J. J. Effects of the concentration of Ga high doping on electric conductivity and red shift of ZnO from frist principles. Acta Phys. Sin. 2010, 59, 4156-4161.
Zhou, K. Fabrication of Ga-doped transparent ZnO film and investigation of its photoelectronic properties. MD. Dissertation, College of Physics of Chongqing University, Chongqing, China, 2010, 39-44.