Journal Home > Volume 8 , Issue 1

Modulation of the morphology of nanostructures is often a rewarding but challenging task. We have employed the seeded growth method and induced kinetic control to synthesize Bi2Se3 nanoplates with modifiable morphology. By manipulating the rate at which precursor solutions were injected into seeds solution with syringe pumps, two distinctive growth modes could be realized. With a fast injection, the thickness of Bi2Se3 nanoplates slightly increased from ~7.5 nm (seeds) to ~9.5 nm while the edge length grew up from ~160 nm (seeds) to ~12 μm, after 6 successive rounds of seeded growth. With a slow injection, the thickness and edge length increased simultaneously to ~35 nm and ~6 μm after 6 rounds of growth, respectively. These two modes could be viewed as a competition between atomic deposition and surface migration. The products showed interesting, thickness-dependent Raman properties. In addition, NIR transparent, highly conductive and flexible Bi2Se3 thin films with different thicknesses were constructed by the assembly of the as-synthesized Bi2Se3 nanoplates. This approach based on seeded growth and kinetic control can significantly promote the development of versatile nanostructures with diverse morphology.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Controlling the lateral and vertical dimensions of Bi2Se3 nanoplates via seeded growth

Show Author's information Awei Zhuang1,§Yuzhou Zhao1,§Xianli Liu1Mingrui Xu1Youcheng Wang1Unyong Jeong2( )Xiaoping Wang1Jie Zeng1( )
Hefei National Laboratory for Physical Sciences at the MicroscaleCollaborative Innovation Center of Suzhou Nano Science and TechnologyCenter of Advanced Nanocatalysis (CAN-USTC) & Department of Chemical PhysicsUniversity of Science and Technology of ChinaHefei Anhui230026P. R. China
Department of Materials Science and EngineeringYonsei University, 134 Shinchon-dong, SeoulKorea

§ These authors contributed equally to this work.

Abstract

Modulation of the morphology of nanostructures is often a rewarding but challenging task. We have employed the seeded growth method and induced kinetic control to synthesize Bi2Se3 nanoplates with modifiable morphology. By manipulating the rate at which precursor solutions were injected into seeds solution with syringe pumps, two distinctive growth modes could be realized. With a fast injection, the thickness of Bi2Se3 nanoplates slightly increased from ~7.5 nm (seeds) to ~9.5 nm while the edge length grew up from ~160 nm (seeds) to ~12 μm, after 6 successive rounds of seeded growth. With a slow injection, the thickness and edge length increased simultaneously to ~35 nm and ~6 μm after 6 rounds of growth, respectively. These two modes could be viewed as a competition between atomic deposition and surface migration. The products showed interesting, thickness-dependent Raman properties. In addition, NIR transparent, highly conductive and flexible Bi2Se3 thin films with different thicknesses were constructed by the assembly of the as-synthesized Bi2Se3 nanoplates. This approach based on seeded growth and kinetic control can significantly promote the development of versatile nanostructures with diverse morphology.

Keywords: nanoplates, bismuth selenide, seeded growth, kinetic control

References(52)

1

Sun, Y. F.; Cheng, H.; Gao, S.; Liu, Q. H.; Sun, Z. H.; Xiao, C.; Wu, C. Z.; Wei, S. Q.; Xie, Y. Atomically thick bismuth selenide freestanding single layers achieving enhanced thermoelectric energy harvesting. J. Am. Chem. Soc. 2012, 134, 20294–20297.

2

Soni, A.; Yanyuan, Z.; Ligen, Y.; Aik, M. K. K.; Dresselhaus, M. S.; Xiong, Q. H. Enhanced thermoelectric properties of solution grown Bi2Te3–xSexnanoplatelet composites. Nano Lett. 2012, 12, 1203–1209.

3

Müchler, L.; Casper, F.; Yan, B. H.; Chadov, S.; Felser, C. Topological insulators and thermoelectric materials. Phys. Status Solidi RRL 2013, 7, 91–100.

4

Moore, J. E. The birth of topological insulators. Nature2010, 464, 194–198.

5

Hasan, M. Z.; Kane, C. L. Topological insulators. Rev. Mod. Phys. 2010, 82, 3045.

6

Qi, X. -L.; Zhang, S. -C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057.

7

Zhang, H. J.; Liu, C. -X.; Qi, X. -L.; Dai, X.; Fang, Z.; Zhang, S. -C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

8

Xia, Y.; Qian, D.; Hsieh, D.; Wray, L.; Pal, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y. S.; Cava, R. J. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 398–402.

9

Kong, D. S.; Cui, Y. Opportunities in chemistry and materials science for topological insulators and their nanostructures. Nat. Chem. 2011, 3, 845–849.

10

Cha, J. J.; Koski, K. J.; Cui, Y. Topological insulator nanostructures. Phys. Status Solidi RRL 2013, 7, 15–25.

11

Zhuang, A. W.; Li, J. J.; Wang, Y. C.; Wen, X.; Lin, Y.; Xiang, B.; Wang, X. P.; Zeng, J. Screw-dislocation-driven bidirectional spiral growth of Bi2Se3nanoplates. Angew. Chem. Int. Ed. 2014, 25, 6543–6547.

12

Kim, D.; Syers, P.; Butch, N. P.; Paglione, J.; Fuhrer, M. S. Ambipolarsurface state thermoelectric power of topological insulator Bi2Se3. Nanolett. 2014, 14, 1701–1706.

13

Wyckoff, R. W. G. Crystal Structures; Krieger: Malabar, FL, 1986.

14

He, L.; Xiu, F. X.; Wang, Y.; Fedorov, A. V.; Huang, G.; Kou, X. F.; Lang, M. R.; Beyermann, W. P.; Zou, J.; Wang, K. L. Epitaxial growth of Bi2Se3 topological insulator thin films on Si (111). J. Appl. Phys. 2011, 109, 103702.

15

Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Achieving surface quantum oscillations in topological insulator thin films of Bi2Se3. Adv. Mater. 2012, 24, 5581–5585.

16

Peng, H. L.; Dang, W. H.; Cao, J.; Chen, Y. L.; Wu, D.; Zheng, W. S.; Li, H.; Shen, Z. -X.; Liu, Z. F. Topological insulator nanostructures for near-infrared transparent flexible electrodes. Nat. Chem. 2012, 4, 281–286.

17

Dang, W. H.; Peng, H. L.; Li, H.; Wang, P.; Liu, Z. F. Epitaxial heterostructures of ultrathin topological insulator nanoplate and graphene. Nano Lett. 2010, 10, 2870–2876.

18

Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135.

19

Kong, D. S.; Dang, W. H.; Cha, J. J.; Li, H.; Meister, S.; Peng, H. L.; Liu, Z. F.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245–2250.

20

Gehring, P.; Gao, B. F.; Burghard, M.; Kern, K. Growth of high-mobility Bi2Te2Se nanoplatelets on hBN sheets by van der Waals epitaxy. Nano Lett. 2012, 12, 5137–5142.

21

Guo, Y.; Aisijiang, M.; Zhang, K.; Jiang, W.; Chen, Y.; Zheng, W.; Song, Z.; Cao, J.; Liu, Z. F.; Peng, H. L. Selective- area Van der Waals epitaxy of topological insulator grid nanostructures for broadband transparent flexible electrodes. Adv. Mater. 2013, 25, 5959–5964.

22

Kim, N.; Lee, P.; Kim, Y.; Kim, J. S.; Kim, Y.; Noh, D. Y.; Yu, S. U.; Chung, J.; Kim, K. S. Persistent topological surface state at the interface of Bi2Se3 film grown on patterned graphene. ACS Nano, 2014, 8, 1154–1160.

23

Vargas, A.; Basak, S.; Liu, F. Z.; Wang, B. K.; Panaitescu, E.; Lin, H.; Markiewicz, R.; Bansil, A.; Kar, S. The changing colors of a quantum-confined topological insulator. ACS Nano, 2014, 8, 1222–1230.

24

Min, Y.; Moon, G. D.; Kim, B. S.; Lim, B.; Kim, J. -S.; Kang, C. Y.; Jeong, U. Quick, controlled synthesis of ultrathin Bi2Se3nanodiscs and nanosheets. J. Am. Chem. Soc. 2012, 134, 2872–2875.

25

Min, Y.; Roh, J. W.; Yang, H.; Park, M.; Kim, S. I.; Hwang, S.; Lee, S. M.; Lee, K. H.; Jeong, U. Surfactant-free scalable synthesis of Bi2Te3 and Bi2Se3 nanoflakes and enhanced thermoelectric properties of their nanocomposites. Adv. Mater. 2013, 25, 1425–1429.

26

Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3nanoplatelets. Nano Lett. 2011, 11, 2407–2414.

27

Kong, D. S.; Koski, K. J.; Cha, J. J.; Hong, S. S.; Cui, Y. Ambipolar field effect in Sb-doped Bi2Se3nanoplates by solvothermal synthesis. Nano Lett. 2013, 13, 632–636.

28

Yu, J. -K.; Mitrovic, S.; Tham, D.; Varghese, J.; Heath, J. R. Reduction of thermal conductivity in phononicnanomesh structures. Nat. Nanotechnol. 2010, 5, 718–721.

29

Son, J. S.; Park, K.; Han, M. -K.; Kang, C.; Park, S. -G.; Kim, J. -H.; Kim, W.; Kim, S. -J.; Hyeon, T. Large-scale synthesis and characterization of the size-dependent thermoelectric properties of uniformly sized bismuth nanocrystals. Angew. Chem. Int. Ed. 2011, 123, 1399–1402.

30

Zuev, Y. M.; Lee, J. S.; Galloy, C.; Park, H.; Kim, P. Diameter dependence of the transport properties of antimony telluride nanowires. Nano Lett. 2010, 10, 3037–3040.

31

Dirmyer, M. R.; Martin, J.; Nolas, G. S.; Sen, A.; Badding, J. V. Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 2009, 5, 933–937.

32

Linder, J.; Yokoyama, T.; Sudbø, A. Anomalous finite size effects on surface states in the topological insulator Bi2Se3. Phys. Rev. B 2009, 80, 205401.

33

Lu, H. -Z.; Shan, W. -Y.; Yao, W.; Niu, Q.; Shen, S. -Q. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B 2010, 81, 115407.

34

Liu, C. -X.; Zhang, H. -J.; Yan, B. H.; Qi, X. -L.; Frauenheim, T.; Dai, X.; Fang, Z.; Zhang, S. C. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys. Rev. B 2010, 81, 041307.

35

Zhang, Y.; He, K.; Chang, C. -Z.; Song, C. -L.; Wang, L. -L.; Chen, X.; Jia, J. -F.; Fang, Z.; Dai, X.; Shan, W. -Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

36

Bansal, N.; Cho, M. R.; Brahlek, M.; Koirala, N.; Horibe, Y.; Chen, J.; Wu, W. D.; Park, Y. D.; Oh, S. Transferring MBE-grown topological insulator films to arbitrary substrates and metal–insulator transition via Dirac gap. Nano Lett. 2014, 14, 1343–1348.

37

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

38

Zeng, J.; Zheng, Y. Q.; Rycenga, M.; Tao, J.; Li, Z. -Y.; Zhang, Q.; Zhu, Y. M.; Xia, Y. N. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 2010, 132, 8552–8553.

39

Langille, M. R.; Zhang, J.; Personick, M. L.; Li, S. Y.; Mirkin, C. A. Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 2012, 337, 954–957.

40

Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D. Au−ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 2011, 133, 5660–5663.

41

Fiore, A.; Mastria, R.; Lupo, M. G.; Lanzani, G.; Giannini, C.; Carlino, E.; Morello, G.; Giorgi, M. D.; Li, Y. Q.; Cingolani, R.; Manna, L. Tetrapod-shaped colloidal nanocrystals of Ⅱ−VI semiconductors prepared by seeded growth. J. Am. Chem. Soc. 2009, 131, 2274–2282.

42

Zhang, Q.; Hu, Y. X.; Guo, S. R.; Goebl, J.; Yin, Y. D. Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands. Nano Lett. 2010, 10, 5037–5042.

43

Zeng, J.; Zhu, C.; Tao, J.; Jin, M. S.; Zhang, H.; Li, Z. -Y.; Zhu, Y. M.; Xia, Y. N. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics. Angew. Chem. Int. Ed. 2012, 51, 2354–2358.

44

Costi, R.; Saunders, A. E.; Banin, U. Colloidal hybrid nanostructures: A new type of functional materials. Angew. Chem. Int. Ed. 2010, 49, 4878–4897.

45

Zheng, H. M.; Smith, R. K.; Jun, Y. -W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

46

Markov, I. V. Crystal Growth For Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 1st ed.; World Scientific Publishing Co. Pte. Ltd. : Singapore, 1995.

DOI
47

Richter, W.; Becker, C. R. A Raman and far-infrared investigation of phonons in the rhombohedral V2–VI3 compounds Bi2Te3, Bi2Se3, Sb2Te3 and Bi2(Te1−xSex)3 (0 < x < 1), (Bi1−ySby)2Te3 (0 < y < 1). Phys. Status Solidi B 1977, 84, 619–628.

DOI
48

He, Q. Y.; Wu, S. X.; Gao, S.; Cao, X. H.; Yin, Z. Y.; Li, H.; Chen, P.; Zhang, H. Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 2011, 5, 5038–5044.

49

Lee, Y.; Bae, S.; Jang, H.; Jang, S.; Zhu, S. E.; Sim, S. H.; Song, Y. I.; Hong, B. H.; Ahn, J. H. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 2010, 10, 490–493.

50

Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.

51

Zhao, Y. X.; Dyck, J. S.; Hernandez, B. M.; Burda, C. Improving thermoelectric properties of chemically synthesized Bi2Te3-based nanocrystals by annealing. J. Phys. Chem. C. 2010, 114, 11607–11613.

52

Xu, H. M.; Chen, G.; Jin, R. C.; Chen, D. H.; Wang, Y.; Pei, J.; Yan, C. S.; Zhang, Y. Q.; Qiu, Z. Z. Enhancement of the Seebeckcoefficient in stacked Bi2Se3nanoplatesby energy filtering. Eur. J. Inorg. Chem. 2014, 16, 2625–2630.

File
12274_2014_657_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2014
Revised: 26 November 2014
Accepted: 27 November 2014
Published: 20 December 2014
Issue date: January 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by MOST of China (2014CB932700 and 2011CB921403), NSFC under Grant Nos. 21203173, 51371164 and J1030412, Strategic Priority Research Program B of the CAS under Grant No. XDB01020000, and Fundamental Research Funds for the Central Universities (WK2340000050 and WK2060190025).

Return