Journal Home > Volume 7 , Issue 5

An atomic layer deposition (ALD) method has been employed to synthesize Fe3O4/graphene and Ni/graphene composites. The structure and microwave absorbing properties of the as-prepared composites are investigated. The surfaces of graphene are densely covered by Fe3O4 or Ni nanoparticles with a narrow size distribution, and the magnetic nanoparticles are well distributed on each graphene sheet without significant conglomeration or large vacancies. The coated graphene materials exhibit remarkably improved electromagnetic (EM) absorption properties compared to the pristine graphene. The optimal reflection loss (RL) reaches -46.4 dB at 15.6 GHz with a thickness of only 1.4 mm for the Fe3O4/graphene composites obtained by applying 100 cycles of Fe2O3 deposition followed by a hydrogen reduction. The enhanced absorption ability arises from the effective impedance matching, multiple interfacial polarization and increased magnetic loss from the added magnetic constituents. Moreover, compared with other recently reported materials, the composites have a lower filling ratio and smaller coating thickness resulting in significantly increased EM absorption properties. This demonstrates that nanoscale surface modification of magnetic particles on graphene by ALD is a very promising way to design lightweight and high-efficiency microwave absorbers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers

Show Author's information Guizhen Wang1,2,3Zhe Gao1Gengping Wan3Shiwei Lin3Peng Yang1,2Yong Qin1( )
State Key Laboratory of Coal ConversionInstitute of Coal ChemistryChinese Academy of SciencesTaiyuan030001China
University of Chinese Academy of SciencesBeijing100039China
Key Laboratory of Chinese Education Ministry for Tropical Biological ResourcesHainan UniversityHaikou570228China

Abstract

An atomic layer deposition (ALD) method has been employed to synthesize Fe3O4/graphene and Ni/graphene composites. The structure and microwave absorbing properties of the as-prepared composites are investigated. The surfaces of graphene are densely covered by Fe3O4 or Ni nanoparticles with a narrow size distribution, and the magnetic nanoparticles are well distributed on each graphene sheet without significant conglomeration or large vacancies. The coated graphene materials exhibit remarkably improved electromagnetic (EM) absorption properties compared to the pristine graphene. The optimal reflection loss (RL) reaches -46.4 dB at 15.6 GHz with a thickness of only 1.4 mm for the Fe3O4/graphene composites obtained by applying 100 cycles of Fe2O3 deposition followed by a hydrogen reduction. The enhanced absorption ability arises from the effective impedance matching, multiple interfacial polarization and increased magnetic loss from the added magnetic constituents. Moreover, compared with other recently reported materials, the composites have a lower filling ratio and smaller coating thickness resulting in significantly increased EM absorption properties. This demonstrates that nanoscale surface modification of magnetic particles on graphene by ALD is a very promising way to design lightweight and high-efficiency microwave absorbers.

Keywords: microwave absorption, graphene, magnetic nanoparticles, atomic layer deposition (ALD)

References(53)

1

Liu, J. W.; Che, R. C.; Chen, H. J.; Zhang, F.; Xia, F.; Wu, Q. S.; Wang, M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small 2012, 8, 1214-1221.

2

Sun, G. B.; Dong, B. X.; Cao, M. H.; Wei, B. Q.; Hu, C. W. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater. 2011, 23, 1587-1593.

3

Song, N. -N.; Ke, Y. -J.; Yang, H. -T.; Zhang, H.; Zhang, X. -Q.; Shen, B. -G.; Cheng, Z. -H. Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7. Sci. Rep. 2013, 3, 2291.

4

Wang, C.; Han, X. J.; Xu, P.; Wang, J. Y.; Du, Y. C.; Wang, X. H.; Qin, W.; Zhang, T. Controlled synthesis of hierarchical nickel and morphology-dependent electromagnetic properties. J. Phys. Chem. C 2010, 114, 3196-3203.

5

Cao, M. -S.; Song, W. -L.; Hou, Z. -L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788-796.

6

Che, R. C.; Peng, L. -M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401-405.

7

Liu, L. T.; Flores, M.; Newman, N. Microwave loss in the high-performance dielectric Ba(Zn1/3Ta2/3)O3 at 4.2 K. Phys. Rev. Lett. 2012, 109, 257601.

8

Xia, F.; Liu, J. W.; Gu, D.; Zhao, P. F.; Zhang, J.; Che, R. C. Microwave absorption enhancement and electron microscopy characterization of BaTiO3 nano-torus. Nanoscale 2011, 3, 3860-3867.

9

Guerin, F. Microwave chiral materials: A review of experimental studies and some results on composites with ferroelectric ceramic inclusions. Prog. Electromagn. Res. 1994, 9, 219-263.

10

Umari, M. H.; Varadan, V. V.; Varadan, V. K. Rotation and dichroism associated with microwave propagation in chiral composite samples. Radio Sci. 1991, 26, 1327-1334.

11

Wang, G. Z.; Gao, Z.; Tang, S. W.; Chen, C. Q.; Duan, F. F.; Zhao, S. C.; Lin, S. W.; Feng, Y. H.; Zhou, L.; Qin, Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. ACS Nano 2012, 6, 11009-11017.

12

Schurig, D.; Mock, J. J.; Justice, B. J.; Cummer, S. A.; Pendry, J. B.; Starr, A. F.; Smith, D. R. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006, 314, 977-980.

13

Shin, D.; Urzhumov, Y.; Jung, Y.; Kang, G. M.; Baek, S.; Choi, M.; Park, H.; Kim, K.; Smith, D. R. Broadband electromagnetic cloaking with smart metamaterials. Nat. Commun. 2012, 3, 1213.

14

Watts, C. M.; Liu, X. L.; Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98-OP120.

15

Kong, L. B.; Li, Z. W.; Liu, L.; Huang, R.; Abshinova, M.; Yang, Z. H.; Tang, C. B.; Tan, P. K.; Deng, C. R.; Matitsine, S. Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 2013, 58, 203-259.

16

Qin, F.; Brosseau, C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 2012, 111, 061301.

17

Bai, X.; Zhai, Y. Z.; Zhang, Y. Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 2011, 115, 11673-11677.

18

Singh, V. K.; Shukla, A.; Patra, M. K.; Saini, L.; Jani, R. K.; Vadera, S. R.; Kumar, N. Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 2012, 50, 2202-2208.

19

Chen, Y. -J.; Xiao, G.; Wang, T. -S.; Ouyang, Q. -Y.; Qi, L. -H.; Ma, Y.; Gao, P.; Zhu, C. -L.; Cao, M. -S.; Jin, H. -B. Porous Fe3O4/carbon core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 2011, 115, 13603-13608.

20

Liu, X. G.; Geng, D. Y.; Meng, H.; Shang, P. J.; Zhang, Z. D. Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl. Phys. Lett. 2008, 92, 173117.

21

Liu, X. G.; Li, B.; Geng, D. Y.; Cui, W. B.; Yang, F.; Xie, Z. G.; Kang, D. J.; Zhang, Z. D. (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band. Carbon 2009, 47, 470-474.

22

Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S. K. Microwave absorption behavior of core-shell structured poly(3, 4-ethylenedioxy thiophene)-barium ferrite nanocomposites. ACS Appl. Mat. Interfaces 2010, 2, 927-933.

23

Zhang, X.; Alloul, O.; He, Q. L.; Zhu, J. H.; Verde, M. J.; Li, Y. T.; Wei, S. Y.; Guo, Z. H. Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets. Polymer 2013, 54, 3594-3604.

24

Zhu, J. H.; Wei, S. Y.; Haldolaarachchige, N.; Young, D. P.; Guo, Z. H. Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell Fe-silica nanoparticles. J. Phys. Chem. C 2011, 115, 15304-15310.

25

Kong, L.; Yin, X. W.; Zhang, Y. J.; Yuan, X. Y.; Li, Q.; Ye, F.; Cheng, L. F.; Zhang, L. T. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 2013, 117, 19701-19711.

26

Sun, X.; He, J. P.; Li, G. X.; Tang, J.; Wang, T.; Guo, Y. X.; Xue, H. R. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2013, 1, 765-777.

27

Zhu, J. H.; Chen, M. J.; Qu, H. L.; Luo, Z. P.; Wu, S. J.; Colorado, H. A.; Wei, S. Y.; Guo, Z. H. Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ. Sci. 2013, 6, 194-204.

28

Zhu, J. H.; Wei, S. Y.; Gu, H. B.; Rapole, S. B.; Wang, Q.; Luo, Z. P.; Haldolaarachchige, N.; Young, D. P.; Guo, Z. H. One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ. Sci. Technol. 2011, 46, 977-985.

29

Yang, X. Y.; Zhang, X. Y.; Ma, Y. F.; Huang, Y.; Wang, Y. S.; Chen, Y. S. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 2009, 19, 2710-2714.

30

George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2009, 110, 111-131.

31

Knez, M.; Nielsch, K.; Niinistö, L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 2007, 19, 3425-3438.

32

Marichy, C.; Bechelany, M.; Pinna, N. Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv. Mater. 2012, 24, 1017-1032.

33

Bachmann, J.; Jing; Knez, M.; Barth, S.; Shen, H.; Mathur, S.; Gösele, U.; Nielsch, K. Ordered iron oxide nanotube arrays of controlled geometry and tunable magnetism by atomic layer deposition. J. Am. Chem. Soc. 2007, 129, 9554-9555.

34

Daub, M.; Knez, M.; Goesele, U.; Nielsch, K. Ferromagnetic nanotubes by atomic layer deposition in anodic alumina membranes. J. Appl. Phys. 2007, 101, 09J111.

35

Kim, W. -H.; Lee, H. -B. -R.; Heo, K.; Lee, Y. K.; Chung, T. -M.; Kim, C. G.; Hong, S.; Heo, J.; Kim, H. Atomic layer deposition of Ni thin films and application to area-selective deposition. J. Electrochem. Soc. 2011, 158, D1-D5.

36

Lee, H. -B. -R.; Gu, G. H.; Son, J. Y.; Park, C. G.; Kim, H. Spontaneous formation of vertical magnetic-metal-nanorod arrays suring plasma-enhanced atomic layer deposition. Small 2008, 4, 2247-2254.

37

Chong, Y. T.; Yau, E. M. Y.; Nielsch, K.; Bachmann, J. Direct atomic layer deposition of ternary ferrites with various magnetic properties. Chem. Mater. 2010, 22, 6506-6508.

38

Lv, W.; Tang, D. -M.; He, Y. -B.; You, C. -H.; Shi, Z. -Q.; Chen, X. -C.; Chen, C. -M.; Hou, P. -X.; Liu, C.; Yang, Q. -H. Low-temperature exfoliated graphenes: Vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano 2009, 3, 3730-3736.

39

Jandhyala, S.; Mordi, G.; Lee, B.; Lee, G.; Floresca, C.; Cha, P. -R.; Ahn, J.; Wallace, R. M.; Chabal, Y. J.; Kim, M. J. et al. Atomic layer deposition of dielectrics on graphene using reversibly physisorbed ozone. ACS Nano 2012, 6, 2722-2730.

40

Teng, X. W.; Black, D.; Watkins, N. J.; Gao, Y. L.; Yang, H. Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett. 2003, 3, 261-264.

41

He, Q. L.; Yuan, T. T.; Wei, S. Y.; Haldolaarachchige, N.; Luo, Z. P.; Young, D. P.; Khasanov, A.; Guo, Z. H. Morphology-and phase-controlled iron oxide nanoparticles stabilized with maleic anhydride grafted polypropylene. Angew. Chem. Int. Ed. 2012, 51, 8842-8845.

42

Chin, S. F.; Iyer, K. S.; Raston, C. L. Fabrication of carbon nano-tubes decorated with ultra fine superparamagnetic nano-particles under continuous flow conditions. Lab Chip 2008, 8, 439-442.

43

de Faria, D.; Silva, S. V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873-878.

DOI
44

Kim, S. S.; Jo, S. B.; Gueon, K. I.; Choi, K. K.; Kim, J. M.; Churn, K. S. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 1991, 27, 5462-5464.

45

Naito, Y.; Suetake, K. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microwave Theory Tech. 1971, 19, 65-72.

46

Wang, F. L.; Liu, J. R.; Kong, J.; Zhang, Z. J.; Wang, X. Z.; Itoh, M.; Machida, K. -I. Template free synthesis and electromagnetic wave absorption properties of monodispersed hollow magnetite nano-spheres. J. Mater. Chem. 2011, 21, 4314-4320.

47

Wang, Z. J.; Wu, L. N.; Zhou, J. G.; Cai, W.; Shen, B. Z.; Jiang, Z. H. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber. J. Phys. Chem. C 2013, 117, 5446-5452.

48

Zhang, J. W.; Yan, C.; Liu, S. J.; Pan, H. S.; Gong, C. H.; Yu, L. G.; Zhang, Z. J. Preparation of Fe2Ni2N and investigation of its magnetic and electromagnetic properties. Appl. Phys. Lett. 2012, 100, 233104.

49

Chen, Y. -J.; Gao, P.; Wang, R. -X.; Zhu, C. -L.; Wang, L. -J.; Cao, M. -S.; Jin, H. -B. Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 2009, 113, 10061-10064.

50

Liu, J. R.; Itoh, M.; Machida, K. -I. Magnetic and electromagnetic wave absorption properties of α-Fe/Z-type Ba-ferrite nanocomposites. Appl. Phys. Lett. 2006, 88, 062503.

51

Zhang, X. F.; Dong, X. L.; Huang, H.; Liu, Y. Y.; Wang, W. N.; Zhu, X. G.; Lv, B.; Lei, J. P.; Lee, C. G. Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 2006, 89, 053115.

52

Frenkel, J.; Doefman, J. Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 1930, 126, 274-275.

53

Xu, P.; Han, X. J.; Wang, C.; Zhou, D. H.; Lv, Z. S.; Wen, A. H.; Wang, X. H.; Zhang, B. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites. J. Phys. Chem. B 2008, 112, 10443-10448.

File
nr-7-5-704_ESM.pdf (3.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 December 2013
Revised: 15 February 2014
Accepted: 17 February 2014
Published: 23 April 2014
Issue date: May 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21376256, 21173248, 21203229, 51362010), the Hundred Talents Program of the Chinese Academy of Sciences, the Hundred Talents Program of Shanxi Province, and in-house projects of the State Key Laboratory of Coal Conversion of China (Nos. Y2BWLD1931, Y3BWLE1931).

Return