Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Flexible and free-standing well-aligned carbon nanotube arrays have been synthesized on super-aligned carbon nanotube films. The combined structure of the carbon nanotube array and carbon nanotube film was formed during chemical vapor deposition on a quartz substrate which had previously been covered with a super-aligned carbon nanotube film. It was found that the growing carbon nanotube array could support up the super-aligned carbon nanotube film entirely, and the top of the array became densely entangled with the super-aligned carbon nanotube film. The carbon nanotube array with the super-aligned carbon nanotube film could be easily peeled off from the quartz substrate as a whole, giving a flexible and free-standing structure with good mechanical properties. The bottom of the array was also exposed after being peeled off and was used as a field emitter. The combined structure of the carbon nanotube array with the carbon nanotube film allowed adsorbent-free field emission by passing a heating current through it. Furthermore, due to the fast thermal response of the structure and the long time needed for re-adsorption of adsorbates in vacuum, it was found that pulsed heating with a 10% duty ratio was sufficient for adsorbent-free field emission. The heating power necessary to sustain the adsorbent-free state can be lowered in this way.
Ye, Y. M.; Mao, Y.; Wang, F.; Lu, H. B.; Qu, L. T.; Dai, L. M. Solvent-free functionalization and transfer of aligned carbon nanotubes with vapor-deposited polymer nanocoatings. J. Mater. Chem. 2011, 21, 837–842.
Kim, M. J.; Nicholas, N.; Kittrell, C.; Haroz, E.; Shan, H. W.; Wainerdi, T. J.; Lee, S.; Schmidt, H. K.; Smalley, R. E.; Hauge, R. H. Efficient transfer of a VA-SWNT film by a flipover technique. J. Am. Chem. Soc. 2006, 128, 9312–9313.
Johnson, R. D.; Bahr, D. F.; Richards, C. D.; Richards, R. F.; McClain, D.; Green, J.; Jiao, J. Thermocompression bonding of vertically aligned carbon nanotube turfs to metalized substrates. Nanotechnology 2009, 20, 065703.
Kumar, A.; Pushparaj, V. L.; Kar, S.; Nalamasu, O.; Ajayan, P. M.; Baskaran, R. Contact transfer of aligned carbon nanotube arrays onto conducting substrates. Appl. Phys. Lett. 2006, 89, 163120.
Zhu, Y. W.; Lim, X. D.; Sim, M. C.; Lim, C. T.; Sow, C. H. Versatile transfer of aligned carbon nanotubes with polydimethylsiloxane as the intermediate. Nanotechnology 2008, 19, 325304.
Fu, Y. F.; Qin, Y. H.; Wang, T.; Chen, S.; Liu, J. H. Ultrafast transfer of metal-enhanced carbon nanotubes at low temperature for large-scale electronics assembly. Adv. Mater. 2010, 22, 5039–5042.
Pint, C. L.; Xu, Y. Q.; Moghazy, S.; Cherukuri, T.; Alvarez, N. T.; Haroz, E. H.; Mahzooni, S.; Doorn, S. K.; Kono, J.; Pasquali, M. et al. Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their pptical properties for diameter distribution and alignment. ACS Nano 2010, 4, 1131–1145.
Zhu, L. B.; Sun, Y. Y.; Hess, D. W.; Wong, C. P. Well-aligned open-ended carbon nanotube architectures: An approach for device assembly. Nano Lett. 2006, 6, 243–247.
Qu, L. T.; He, P. G.; Li, L. C.; Gao, M.; Wallace, G.; Dai, L. M. Aligned/micropatterned carbon nanotube arrays: Surface functionalization and electrochemical sensing. Proc. SPIE 2005, 5732, 84–92.
Ci, L. J.; Manikoth, S. M.; Li, X. S.; Vajtai, R.; Ajayan, P. M. Ultrathick freestanding aligned carbon nanotube films. Adv. Mater. 2007, 19, 3300–3303.
Murakami, Y.; Maruyama, S. Detachment of vertically aligned single-walled carbon nanotube films from substrates and their re-attachment to arbitrary surfaces. Chem. Phys. Lett. 2006, 422, 575–580.
Huang, J. Q.; Zhang, Q.; Zhao, M. Q.; Wei, F. The release of free standing vertically-aligned carbon nanotube arrays from a substrate using CO2 oxidation. Carbon 2010, 48, 1441–1450.
Delmas, M.; Pinault, M.; Patel, S.; Porterat, D.; Reynaud, C.; Mayne-L'Hermite, M. Growth of long and aligned multi-walled carbon nanotubes on carbon and metal substrates. Nanotechnology 2012, 23, 105604.
Veedu, V. P.; Cao, A. Y.; Li, X. S.; Ma, K. G.; Soldano, C.; Kar, S.; Ajayan, P. M.; Ghasemi-Nejhad, M. N. Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 2006, 5, 457–462.
Patole, S. P.; Kim, H. I.; Jung, J. H.; Patole, A. S.; Kim, H. J.; Han, I. T.; Bhoraskar, V. N.; Yoo, J. B. The synthesis of vertically-aligned carbon nanotubes on an aluminum foil laminated on stainless steel. Carbon 2011, 49, 3522–3528.
Jo, S. H.; Wang, D. Z.; Huang, J. Y.; Li, W. Z.; Kempa, K.; Ren, Z. F. Field emission of carbon nanotubes grown on carbon cloth. Appl. Phys. Lett. 2004, 85, 810–812.
Feng, C.; Liu, K.; Wu, J. S.; Liu, L.; Cheng, J. S.; Zhang, Y. Y.; Sun, Y. H.; Li, Q. Q.; Fan, S. S.; Jiang, K. L. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 2010, 20, 885–891.
Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z. Q.; Wang, Y.; Qian, L.; Zhang, Y. Y.; Li, Q. Q.; Jiang, K. L. et al. Flexible, stretchable, transparent carbon nanotube thin film loudspeakers. Nano Lett. 2008, 8, 4539–4545.
Foroughi, J.; Spinks, G. M.; Wallace, G. G.; Oh, J.; Kozlov, M. E.; Fang, S. L.; Mirfakhrai, T.; Madden, J. D. W.; Shin, M. K.; Kim, S. J. et al. Torsional carbon nanotube artificial muscles. Science 2011, 334, 494–497.
Zhang, L.; Feng, C.; Chen, Z.; Liu, L.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Superaligned carbon nanotube grid for high resolution transmission electron microscopy of nanomaterials. Nano Lett. 2008, 8, 2564–2569.
Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L. A.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.
Zhou, W. W.; Ding, L.; Yang, S. W.; Liu, J. Orthogonal orientation control of carbon nanotube growth. J. Am. Chem. Soc. 2010, 132, 336–341.
Liu, P.; Jiang, K. L.; Wei, Y.; Liu, K.; Liu, L. A.; Fan, S. S. Field emission behavior study of multiwalled carbon nanotube yarn under the influence of adsorbents. J. Vac. Sci. Technol. B 2010, 28, 736–739.
Liu, P.; Liu, L.; Wei, Y.; Liu, K.; Chen, Z.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Fast high-temperature response of carbon nanotube film and its application as an incandescent display. Adv. Mater. 2009, 21, 3563–3566.
Liu, P.; Liu, L.; Jiang, K. L.; Fan, S. S. Carbon-nanotube-film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays. Small 2011, 7, 732–736.
Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.
Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.
Zhang, X. B.; Jiang, K. L.; Teng, C.; Liu, P.; Zhang, L. N.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.
Liu, K.; Sun, Y. H.; Liu, P.; Lin, X. Y.; Fan, S. S.; Jiang, K. L. Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 2011, 21, 2721–2728.
Swanson, L. W.; Bell, A. E. Recent advances in field electron microscopy of metals. Adv. Electron. Electron Phys. 1973, 32, 193–309.