Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Semiconducting nanoparticles with lower bandgap (e.g., CdS) are alternative photocatalysts to TiO2, since they have a potentially wider range light of absorption and improved catalytic efficiency. However, they must be securely anchored on a porous substrate for practical applications. Here, we report a hybrid porous photocatalyst fabricated by grafting 4–6 nm diameter CdS nanoparticles uniformly throughout the entire macroporous structure of a three-dimensional carbon nanotube (CNT) sponge. The unique feature of our structure is that only the CdS nanoparticles grafted on the outside surface are active in photocatalysis, while other nanoparticles are stored inside the sponge in the fresh state for use when the catalyst is recycled. Our CdS–CNT hybrid sponges show high efficiency in removing organic contaminants from water. Spectroscopic measurements show that the hybrid sponges are multifunctional, simultaneously performing organic molecular adsorption (using the inter-CNT spacing), and photocatalytic decomposition (by the CdS nanoparticles grafted on the surface), both of which contribute to water purification. Furthermore, the surface part of the sponges can be stripped off to expose inner nanoparticles for use when the catalyst is recycled, without performance degradation.
Luther, J. M.; Gao, J. B.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J. Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv. Mater. 2010, 22, 3704–3707.
Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X. H.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Grätzel, M.; Sargent, E. H. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 2010, 4, 3374–3380.
Gaya, U. I.; Abdullah, A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. J. Photochem. Photobiol. C–Photochem. Rev. 2008, 9, 1–12.
Guo, C. S.; Ge, M.; Liu, L.; Gao, G. D.; Feng, Y. C.; Wang, Y. Q. Directed synthesis of mesoporous TiO2 microspheres: Catalysts and their photocatalysis for bisphenol degradation. Environ. Sci. Technol. 2010, 44, 419–425.
Pan, J. H.; Dou, H. Q.; Xiong, Z. G.; Xu, C.; Ma, J. Z.; Zhao, X. S. Porous photocatalysts for advanced water purifications. J. Mater. Chem. 2010, 20, 4512–4528.
Liu, Z. Y.; Bai, H. W.; Sun, D. R. Facile fabrication of hierarchical porous TiO2 hollow microspheres with high photocatalytic activity for water purification. Appl. Catal. B–Environ. 2011, 104, 234–238.
Xiong, Z. G.; Dou, H. Q.; Pan, J. H.; Ma, J. Z.; Xu, C.; Zhao, X. S. Synthesis of mesoporous anatase TiO2 with a combined template method and photocatalysis. CrystEngComm 2010, 12, 3455–3457.
Xiong, S. L.; Xi, B. J.; Qian, Y. T. CdS hierarchical nanostructures with tunable morphologies: preparation and photocatalytic properties. J. Phys. Chem. C 2010, 114, 14029–14035.
Miao, J. J.; Ren, T.; Dong, L.; Zhu, J. J.; Chen, H. Y. Double-template synthesis of CdS nanotubes with strong electrogenerated chemiluminescence. Small 2005, 1, 802–805.
Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027.
Xiao, Y. T.; Xu, S. S.; Du, Y. C.; Shiang, F. Q. Progress of novel TiO2 photocatalytic separation. J. Inorg. Mater. 2011, 26, 337–346.
Wang, Q.; Chen, G.; Zhou, C.; Jin, R. C.; Wang, L. Sacrificial template method for the synthesis of CdS nanosponges and their photocatalytic properties. J. Alloy. Compd. 2010, 503, 485–489.
Ji, K. H.; Jang, D. M.; Cho, Y. J.; Myung, Y.; Kim, H. S.; Kim, Y.; Park, J. Comparative photocatalytic ability of nanocrystal–carbon nanotube and TiO2 nanocrystal hybrid nanostructures. J. Phys. Chem. C 2009, 113, 19966–19972.
Gui, X. C.; Wei, J. Q.; Wang, K. L.; Cao, A. Y.; Zhu, H. W.; Jia, Y.; Shu, Q. K.; Wu, D. H. Carbon nanotube sponges. Adv. Mater. 2010, 22, 617–621.
Li, H. B.; Gui, X. C.; Zhang, L. H.; Ji, C. Y.; Zhang, Y. C.; Sun, P. Z.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Wu, D. H.; Cao, A. Y. Enhanced transport of nanoparticles across a porous nanotube sponge. Adv. Funct. Mater. 2011, 21, 3439–3445.
Hu, L. B.; Zhao, Y. L.; Ryu, K. M.; Zhou, C. W.; Stoddart, J. F.; Grüner, G. Light-induced charge transfer in pyrene/CdSe-SWNT hybrids. Adv. Mater. 2008, 20, 939–946.
Robel, I.; Bunker, B. A.; Kamat, P. V. Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Adv. Mater. 2005, 17, 2458–2463.
Li, X. L.; Jia, Y.; Wei, J. Q.; Zhu, H. W.; Wang, K. L.; Wu, D. H.; Cao, A. Y. Solar cells and light sensors based on nanoparticle-grafted carbon nanotube films. ACS Nano 2010, 4, 2142–2148.
Apte, S. K.; Garaje, S. N.; Mane, G. P.; Vinu, A.; Naik, S. D.; Amalnerkar, D. P.; Kale, B. B. A facile template-free approach for the large-scale solid-phase synthesis of CdS nanostructures and their excellent photocatalytic performance. Small 2011, 7, 957–964.
Kim, Y. K.; Park, H. Light-harvesting multi-walled carbon nanotubes and CdS hybrids: Application to photocatalytic hydrogen production from water. Energy Environ. Sci. 2011, 4, 685–694.
Yong, K. T.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Shape control of CdS nanocrystals in one-pot synthesis. J. Phys. Chem. C 2007, 111, 2447–2458.
Li, W. J.; Li, D. Z.; Meng, S. G.; Chen, W.; Fu, X. Z.; Shao, Y. Novel approach to enhance photosensitized degradation of Rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites. Environ. Sci. Technol. 2011, 45, 2987–2993.