Journal Home > Volume 3 , Issue 3

NiFe2O4 nanoparticles (< 10 nm) embedded in a NiO matrix have been fabricated by calcining the corresponding NiFe-layered double hydroxide (LDH) precursors at high temperature (500 ℃). Compared with the NiFe2O4/NiO nanocomposite obtained by calcination of a precursor prepared by a traditional chemical coprecipitation method, those derived from NiFe-LDH precursors show much higher blocking temperatures (TB) (~380 K). The enhanced magnetic stability can be ascribed to the much stronger interfacial interaction between NiFe2O4 and NiO phases due to the topotactic nature of the transformation of the LDH precursor to the NiFe2O4/NiO composite material. Through tuning the Ni/Fe molar ratio of the NiFe-LDH precursor, the NiFe2O4 concentration can be precisely controlled, and the TB value as well as the magnetic properties of the final material can also be regulated. This work represents a successful example of the fabrication of ferro(ferri)magnetic (FM)/antiferrimagnetic (AFM) systems with high magnetic stability from LDH precursors. This method is general and may be readily extended to other FM/AFM systems due to the wide range of available LDH precursors.


menu
Abstract
Full text
Outline
About this article

Exchange-Biased NiFe2O4/NiO Nanocomposites Derived from NiFe-Layered Double Hydroxides as a Single Precursor

Show Author's information Xiaofei ZhaoSailong XuLianying WangXue DuanFazhi Zhang( )
State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijing100029China

Abstract

NiFe2O4 nanoparticles (< 10 nm) embedded in a NiO matrix have been fabricated by calcining the corresponding NiFe-layered double hydroxide (LDH) precursors at high temperature (500 ℃). Compared with the NiFe2O4/NiO nanocomposite obtained by calcination of a precursor prepared by a traditional chemical coprecipitation method, those derived from NiFe-LDH precursors show much higher blocking temperatures (TB) (~380 K). The enhanced magnetic stability can be ascribed to the much stronger interfacial interaction between NiFe2O4 and NiO phases due to the topotactic nature of the transformation of the LDH precursor to the NiFe2O4/NiO composite material. Through tuning the Ni/Fe molar ratio of the NiFe-LDH precursor, the NiFe2O4 concentration can be precisely controlled, and the TB value as well as the magnetic properties of the final material can also be regulated. This work represents a successful example of the fabrication of ferro(ferri)magnetic (FM)/antiferrimagnetic (AFM) systems with high magnetic stability from LDH precursors. This method is general and may be readily extended to other FM/AFM systems due to the wide range of available LDH precursors.

Keywords: Layered double hydroxide, exchange bias, topotactic mechanism, interfacial interaction, magnetic stability

References(45)

1

Choudhary, V. R.; Dumbre, D. K.; Uphade, B. S.; Narkhede, V. S. Solvent-free oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide using transition metal containing layered double hydroxides and/or mixed hydroxides. J. Mol. Catal. A: Chem. 2004, 215, 129–135.

2

Casenave, S.; Martinez, H.; Guimon, C.; Auroux, A.; Hulea, V.; Cordoneanu, A.; Dumitriu, E. Acid-base properties of MgNi-Al mixed oxides using LDH as precursors. Thermochim. Acta. 2001, 379, 85–93.

3

Kagunya, W.; Hassan, Z.; Jones, W. Catalytic properties of layered double hydroxides and their calcined derivatives. Inorg. Chem. 1996, 35, 5970–5974.

4

Costantino, U.; Ambrogi, V.; Nocchetti, M.; Perioli, L. Hydrotalcite-like compounds: Versatile layered hosts of molecular anions with biological activity. Micropor. Mesopor. Mat. 2008, 107, 149–160.

5

Williams, G. R.; O'Hare, D. Factors influencing staging during anion-exchange intercalation into [LiAl2(OH)6]X·mH2O (X = Cl, Br, NO3). Chem. Mater. 2005, 17, 2632–2640.

6

Khan, A. I.; O'Hare, D. Intercalation chemistry of layered double hydroxides: Recent developments and applications. J. Mater. Chem. 2002, 12, 3191–3198.

7

Bontchev, R. P.; Liu, S.; Kumhansl, J. L.; Vogit, J.; Nenoff, T. M. Synthesis, characterization, and ion exchange properties of hydrotalcite Mg6Al2(OH)6(A)x(A′)2-x·4H2O (A, A′ = Cl, Br, I, and NO3, 2≥x≥0) derivatives. Chem. Mater. 2003, 15, 3669–3675.

8

Pavan, P. C.; Gomes, G.; Valim, J. B. Adsorption of sodium dodecyl sulfate on layered double hydroxides. Micropor. Mesopor. Mat. 1998, 21, 659–665.

9

Lv, L.; He, J.; Wei, M.; Evans, D. G.; Duan, X. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies. Water Res. 2006, 40, 735–743.

10

Combourieu, B.; Inacio, J.; A. Delort, M.; Forano, C. Differentiation of mobile and immobile pesticides on anionic clays by 1H HR MAS NMR spectroscopy. Chem. Commun. 2001, 2214–2215.

11

Desigaux, L.; Belkacem, M. B.; Richard, P.; Cellier, J.; Léone, P.; Cario, L.; Leroux, F.; Taviot-Guého, C.; Pitard, B. Self-assembly and characterization of layered double hydroxide/DNA hybrids. Nano Lett. 2006, 6, 199–204.

12

Darder, M.; López-Blanco, M.; Aranda, P.; Leroux, F.; Ruiz-Hitzky, E. Bio-nanocomposites based on layered double hydroxides. Chem. Mater. 2005, 17, 1969–1977.

13

Yuan, Q.; Wei, M.; Evans, D. G.; Duan, X. Preparation and investigation of thermolysis of L-aspartic acid-intercalated layered double hydroxide. J. Phys. Chem. B 2004, 108, 12381–12387.

14

Ren, L.; He, J.; Zhang, S.; Evans, D. G.; Duan, X. Immobilization of penicillin G acylase in layered hydroxides pillared by glutamate ions. J. Mol. Catal. B: Enzym. 2002, 18, 3–11.

15

Carriazo, D.; Domingo, C.; Martin C.; Rives, V. Structural and texture evolution with temperature of layered double hydroxides intercalated with paramolybdate anions. Inorg. Chem. 2006, 45, 1243–1251.

16

Morandi, S.; Prinetto, F.; Martino, M. D.; Ghiotti, G.; Lorret, O.; Tichit, D.; Malagù, C.; Vendemiati B.; Carotta, M. C. Synthesis and characterization of gas sensor materials obtained from Pt/Zn/Al layered double hydroxides. Sensor. Actuat. B–Chem. 2006, 118, 215–220.

17

Liu, J. P.; Li, Y. Y.; Huang, X. T.; Li, G. Y.; Li, Z. K. Layered double hydroxide nano- and microstructures grown directly on metal substrates and their calcined products for application as Li-ion battery electrodes. Adv. Funct. Mater. 2008, 18, 1448–1458.

18

Li, F.; Liu, J. J.; Evans, D. G.; Duan. X. Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem. Mater. 2004, 16, 1597–1602.

19

Sideris, P. J.; Nielsen, U. G.; Gan, Z. H.; Grey, C. P. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science 2008, 321, 113–117.

20

Li, C.; Wang, L. Y.; Wei, M.; Evans, D. G.; Duan, X. Large oriented mesoporous self-supporting Ni–Al oxide films derived from layered double hydroxide precursors. J. Mater. Chem. 2008, 18, 2666–2672.

21

Millange, F; Walton, R. I.; O'Hare, D. Time-resolved in situ X-ray diffraction study of the liquid-phase reconstruction of Mg–Al-carbonate hydrotalcite-like componds. J. Mater. Chem. 2000, 10, 1713–1720.

22

Del Arco, M.; Malet, P.; Trujillano, R.; Rives, V. Synthesis and characterization of hydrotalcites containing Ni(Ⅱ) and Fe(Ⅲ) and their calcination products. Chem. Mater. 1999, 11, 624–633.

23

Rondinone, A. J.; Samia, A. C. S.; Zhang Z. J. Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B 1999, 103, 6876–6880.

24

Cheng, Z. J; Lin, L.; Jiang, L. Tunable adhesive superhydrophobic surfaces for superparamagnetic microdroplets. Adv. Funct. Mater. 2008, 18, 1–7.

25

Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

26

Lüders, U.; Barthélémy, A.; Bibes, M.; Bouzehouane, K.; Fusil, S.; Jacquet, E.; Contour, J. -P.; Bobo, J. -F.; Fontcuberta, J.; Fert, A. NiFe2O4: A versatile spinel material brings new opportunities for spintronics. Adv. Mater. 2006, 18, 1733–1736.

27

Martín, J. I.; Nogués, J.; Liu, K.; Vicent, J. L.; Schuller, I. K. Ordered magnetic nanostructures: Fabrication and properties. J. Magn. Magn. Mater. 2003, 256, 449–501.

28

Kodama, R. H. Magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 200, 359–372.

29

Kremenovic, A.; Antic, B.; Spasojevic, V.; Vucinic-Vasic, M.; Jaglicic, Z.; Pirnat, J.; Trontelj, Z. X-ray powder diffraction line broadening analysis and magnetism of interacting ferrite nanoparticles obtained from acetylacetonato complexes. J. Phys. : Condens. Matter 2005, 17, 4285–4299.

30

Vestal, C. R.; Song, Q.; Zhang, Z. J. Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. J. Phys. Chem. B 2004, 108, 18222–18227.

31

Skumryev, V.; Stoyanov, S.; Zhang, Y.; Hadjipanayis, G.; Givord, D.; Nogués, N. Beating the superparamagnetic limit with exchange bias. Nature 2003, 423, 850–853.

32

Lee, I. S.; Lee, N.; Park, J.; Kim, B. H.; Yi, Y. -W.; Kim, T.; Kim, T. K.; Lee, I. H.; Paik, S. R.; Hyeon, T. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc. 2006, 128, 10858–10859.

33

Redl, F. X.; Black, C. T.; Papaefthymiou, G. C.; Sandstrom, R. L.; Yin, M.; Zheng, H.; Murria, C. B.; Brien, S. P. Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J. Am. Chem. Soc. 2004, 126, 14583–14599.

34

Salazar-Alvarez, G.; Sort, J.; Surinach, S.; Baro, M. D.; Nogués, J. Synthesis and size-dependent exchange bias in inverted core-shell MnO|MnO nanoparticles. J. Am. Chem. Soc. 2007, 129, 9102–9108.

35

Nogués, J. H.; Sort, J.; Langlais, V.; Doppiu, S.; Dieny, B.; Munoz, J. S.; Surinach, S.; Baro, M. D.; Stoyanov, S.; Zhang, Y. Exchange bias in ferromagnetic nanoparticles embedded in an antiferromagnetic matrix. Int. J. Nanotechnol. 2005, 2, 23–42.

36

Masala, O.; Seshadri, R. Spinel ferrite/MnO core/shell nanoparticles: Chemical synthesis of all-oxide exchange biased architectures. J. Am. Chem. Soc. 2005, 127, 9354–9355.

37

Artus, M.; Ammar, S.; Sicard, L.; Piquemal, J. -Y.; Herbst, F.; Vaulay, M. -J.; Fiévet, F.; Richard, V. Synthesis and magnetic properties of ferrimagnetic CoFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix. Chem. Mater. 2008, 20, 4861–4872.

38

Tian, Z. M.; Yuan, S. L.; Yin, S. Y.; Liu, L.; He, J. H.; Duan, H. N.; Li, P.; Wang, C. H. Exchange bias effect in a granular system of NiFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix. Appl. Phys. Lett. 2008, 93, 222505.

39

Zhao, Y.; Li, F.; Zhang, R.; Evans, D. G.; Duan, X. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chem. Mater. 2002, 14, 4286–4291.

40

Rebours, B.; d'Espinose de la Caillerie, J. -B.; Clause, O. Decoration of nickel and magnesium oxide crystallites with spinel-type phases. J. Am. Chem. Soc. 1994, 116, 1707-1717.

41

Pettigrew, K. A.; Long, J. W.; Carpenter, E. E.; Baker, C. C.; Lytle, J. C.; Chervin, C. N.; Logan, M. S.; Stroud, R. M.; Rolison. D. R. Nickel ferrite aerogels with monodisperse nanoscale building blocks—The importance of processing temperature and atmosphere. ACS Nano 2008, 2, 784–790.

42

Šepelák, V.; Bergmann, I.; Feldhoff, A.; Heitjans, P.; Krumeich, F.; Menzel, D.; Litterst, F. J.; Campbell, S. J.; Becker, K. D. Nanocrystalline nickel ferrite, NiFe2O4: Mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behavior. J. Phys. Chem. C 2007, 111, 5026–5033.

43

Jensen, P. J. Magnetic recording medium with improved temporal stability. Appl. Phys. Lett. 2001, 78, 2190–2192.

44

Luo, W.; Nagel, S. R.; Rosenbaum, T. F.; Rosensweig, R. E. Dipole interactions with random anisotropy in a frozen ferrofluid. Phys. Rev. Lett. 1991, 67, 2721–2724.

45

Maniya, H.; Nakatani, L.; Furubayashi, T. Blocking and freezing of magnetic moments for iron nitride fine particle systems. Phys. Rev. Lett. 1997, 80, 177–180.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 November 2009
Revised: 21 January 2010
Accepted: 22 January 2010
Published: 05 May 2010
Issue date: March 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

We would like to thank Professor David G. Evans in the State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, who helped us check the manuscript and refine the language carefully and also offered a lot of constructive suggestions for this paper. This work was supported by the National Natural Science Foundation of China, the 111 Project (No. B07004), the 973 Program (No. 2009CB939802), the Program for New Century Excellent Talents in Universities (No. NCET-07-0055), and the Beijing Nova Program (No. 2007B021).

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return