Journal Home > Volume 3 , Issue 3

WS2 nanotubes have been filled and intercalated by molten phase caesium iodide. The presence of caesium iodide inside the WS2 nanotubes has been determined using high-resolution transmission electron microscopy (HRTEM) coupled with electron energy-loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDS). Noticeably, a Moiré pattern was observed due to the interference between encapsulated CsI and WS2 layers. The intercalation of CsI into the host concentric WS2 lattices resulted in an increase in the interplanar spacing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis and Characterization of WS2 Inorganic Nanotubes with Encapsulated/Intercalated CsI

Show Author's information Sung You Hong1Ronit Popovitz-Biro2Gerard Tobias3Belén Ballesteros3Benjamin G. Davis1Malcolm L. H. Green3Reshef Tenne4( )
Department of Chemistry, Chemistry Research LaboratoryUniversity of Oxford, Mansfield RoadOxfordOX1 3TAUK
Electron Microscopy UnitWeizmann Institute of ScienceRehovot76100Israel
Inorganic Chemistry LaboratoryUniversity of Oxford, South Parks RoadOxfordOX1 3QRUK
Department of Materials and InterfacesWeizmann Institute of ScienceRehovot76100Israel

Abstract

WS2 nanotubes have been filled and intercalated by molten phase caesium iodide. The presence of caesium iodide inside the WS2 nanotubes has been determined using high-resolution transmission electron microscopy (HRTEM) coupled with electron energy-loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDS). Noticeably, a Moiré pattern was observed due to the interference between encapsulated CsI and WS2 layers. The intercalation of CsI into the host concentric WS2 lattices resulted in an increase in the interplanar spacing.

Keywords: encapsulation, intercalation, transmission electron microscopy, Inorganic nanotubes

References(16)

1

Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 2006, 1, 103–111.

2

Ajayan, P. M.; Iijima, S. Capillarity-induced filling of carbon nanotubes. Nature 1993, 361, 333–361.

3

Tsang, S. C.; Chen, Y. K.; Harris, P. J. F.; Green. M. L. H. A simple chemical method of opening and filling carbon nanotubes. Nature 1994, 372, 159–162.

4

Ugarte, D.; Chatelain, A.; de Heer, W. A. Nanocapillarity and chemistry in carbon nanotubes. Science 1996, 274, 1897–1899.

5

Takenobu, T.; Takano, T.; Shiraishi, M.; Murakami, Y.; Ata, M.; Kataura, H.; Achiba, Y.; Iwasa, Y. Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2003, 2, 683–688.

6

Sloan, J.; Kirkland, A. I.; Hutchison, J. L.; Green, M. L. H. Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem. Commun. 2002, 1319–1332.

7

Meyer, R. R.; Sloan, J.; Dunin-Borkowski, R. E.; Kirkland, A. I.; Novotny, M. C.; Bailey, S. R.; Hutchison, J. L.; Green, M. L. H. Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 2000, 289, 1324–1326.

8

Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360, 444–446.

9

Kertesy, M.; Hoffman, R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 1984, 106, 3453–3460.

10

Rosentsveig, R.; Margolin, A.; Feldman, Y.; Popovitz-Biro, R.; Tenne, R. WS2 nanotube bundles and foils. Chem. Mater. 2002, 14, 471–473.

11

Kelly, A.; Groves, G. W.; Kidd, P. Crystallography and Crystal Defects; Wiley: Chichester, 2nd ed., 2000.

12

Wypych, F.; Schollhorn, R. 1T MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc., Chem. Commun. 1992, 1386–1388.

13

Schellenberger, A.; Schlaf, R.; Pettenkofer, C.; Jaegerman, W. Synchrotron-induced surface-photovoltage saturation at intercalated Na/WSe2 interfaces. Phys. Rev. B 1992, 45, 3538–3545.

14

Zhou, O.; Fleming, R. M.; Murphy, D. W.; Chen, C. H.; Haddon, R. C.; Ramirez, A. P.; Glarum, S. H. Defects in carbon nanostructures. Science 1994, 263, 1744–1747.

15

Zak, A.; Feldman, Y.; Lyakhoviskaya, V.; Leitus, G.; Popovitz-Biro, R.; Wachtel, E.; Cohen, H.; Reich, S.; Tenne, R. Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 2002, 124, 4747–4758.

16

Kreizman, R.; Hong, S. Y.; Sloan, J.; Popovitz-Biro, R.; Albu-Yaron, A.; Tobias, G.; Ballesteros, B.; Davis, B. G.; Green, M. L. H.; Tenne, R. Core–shell PbI2@WS2 inorganic nanotubes from capillary wetting. Angew. Chem. Int. Ed. 2009, 48, 1230–1233.

File
nr-3-3-170_ESM.pdf (419.6 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 11 December 2009
Revised: 01 January 2010
Accepted: 04 January 2010
Published: 05 May 2010
Issue date: March 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by the Israel Science Foundation, European Research Council (ERC) grant (No. INTIF 226639); H. Perlman Foundation and the Cherna Moskowitz Center for Nano and Bio-Nano imaging. We thank Dr. Rita Rosentsveig for the supply of WS2 inorganic nanotubes. G. T. acknowledges support through FP7 European Community Marie Curie European Reintegration Grant (ERG) (No. PERG04-GA-2008-239303) and B. B. a contract from Ministry of Science and Innovation (Ministerio de Ciencia e Innovación, MICINN) Spain. S. Y. H was supported by a Samsung Corporation fellowship (2005–2009). B. G. D. is a Royal Society-Wolfson Research Merit Award recipient and is also supported by an Engineering and Physical Sciences Research Council of the UK (EPSRC) Platform Grant (No. EPSRC EP/E000614/1).

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return