Journal Home > Volume 4 , Issue 2

We have investigated the electronic and structural properties of inorganic nanoribbons (BN, AlN, GaN, SiC, and ZnO) with unpassivated zigzag edges using density functional theory calculations. We find that, in general, the unpassivated zigzag edges can lead to spin-splitting of energy bands. More interestingly, the inorganic nanoribbons AlN and SiC with either one or two edges unpassivated are predicted to be half metallic. Possible structural reconstruction at the unpassivated edges and its effect on the electronic properties are investigated. The unpassivated N edge in the BN nanoribbon and P edge in the AlP nanoribbon are energetically less stable than the corresponding reconstructed edge. Hence, edge reconstruction at the two edges may occur at high temperatures. Other unpassivated edges of the inorganic nanoribbons considered in this study are all robust against edge reconstruction.


menu
Abstract
Full text
Outline
About this article

Inorganic Nanoribbons with Unpassivated Zigzag Edges: Half Metallicity and Edge Reconstruction

Show Author's information Menghao Wu1Xiaojun Wu2Yong Pei3Xiao Cheng Zeng1( )
Department of ChemistryDepartment of Physics and AstronomyUniversity of Nebraska-LincolnLincolnNebraska68588USA
Department of Materials of Science and EngineeringHefei National Laboratory for Physical Materials at MicroscaleUniversity of Science and Technology of ChinaHefeiAnhui230026China
Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of EducationXiangtan UniversityXiangtan411105China

Abstract

We have investigated the electronic and structural properties of inorganic nanoribbons (BN, AlN, GaN, SiC, and ZnO) with unpassivated zigzag edges using density functional theory calculations. We find that, in general, the unpassivated zigzag edges can lead to spin-splitting of energy bands. More interestingly, the inorganic nanoribbons AlN and SiC with either one or two edges unpassivated are predicted to be half metallic. Possible structural reconstruction at the unpassivated edges and its effect on the electronic properties are investigated. The unpassivated N edge in the BN nanoribbon and P edge in the AlP nanoribbon are energetically less stable than the corresponding reconstructed edge. Hence, edge reconstruction at the two edges may occur at high temperatures. Other unpassivated edges of the inorganic nanoribbons considered in this study are all robust against edge reconstruction.

Keywords: density functional theory, AlN and SiC nanoribbons, half metallicity, unpassivated zigzag edge, edge reconstruction

References(38)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

2

Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2006, 2, 620–625.

3

Zhou, S. Y.; Gwenon, G. H.; Graf, J.; Ferdorov, A. V.; Spataru, C. D.; Diehl, R. D.; Kopelevich, Y.; Lee, D. H.; Louie, S. G.; Lanzara, A. First direct observation of Dirac fermions in graphite. Nat. Phys. 2006, 2, 595–599.

4

Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379.

5

Zheng, Y.; Ando, T. Hall conductivity of a two-dimensional graphite system. Phys. Rev. B 2002, 65, 245420.

6

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigonrieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

7

Fujita, M.; Wakabayasi, K.; Nakada, K.; Kusakabe, K. Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 1996, 65, 1920–1923.

8

Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus. M. S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.

9

Miyamoto, Y.; Nakada, K.; Fujita, M. First-principles study of edge states of H-terminated graphitic ribbons. Phys. Rev. B 1999, 60, 16211–16211.

10

Kusakabe, K.; Maruyama, M. Magnetic nanographite. Phys. Rev. B 2003, 67, 092406.

11

Pisani, L.; Chan, J. A.; Montanari, B.; Harrison, N. M. Electronic structure and magnetic properties of graphitic ribbons. Phys. Rev. B 2007, 75, 064418.

12

Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

13

Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

14

Kan, E. J.; Li, Z.; Yang, J. L.; Hou, J. G. Will zigzag graphene nanoribbon turn to half metal under electric field? Appl. Phys. Lett. 2007, 91, 243116.

15

Kan, E. J.; Li, Z.; Yang, J. L.; Hou, J. G. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4224–4225.

16

Wu, M. H.; Wu, X.; Zeng, X. C. Exploration of half metallicity in edge-modified graphene nanoribbons. J. Phys. Chem C. 2010, 114, 3937–3944.

17

Wu, M.; Wu, X.; Gao, Y.; Zeng, X. C. Materials design of half metallic graphene and graphene nanoribbons. Appl. Phys. Lett. 2009, 94, 223111.

18

de Groot, R. A.; Mueller, F. M.; van Engen, P. G.; Buschow, K. H. J. New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett. 1983, 50, 2024–2027.

19

Prinz, G. A. Magnetoelectronics. Science 1998, 282, 1660–1663.

20

Ziese, M. Extrinsic magnetotransport phenomena in ferromagnetic oxides. Rep. Prog. Phys. 2002, 65, 143–249.

21

Zheng, F.; Zhou, G.; Liu, Z.; Wu, J.; Duan, W.; Gu, B. L.; Zhang, S. B. Half metallicity along the edge of zigzag boron nitride nanoribbons. Phys. Rev. B 2008, 78, 205415.

22

Botello-Mendez, A. R.; Lopez-Urias, F.; Terrones, M.; Terrones, H. Magnetic behavior in zinc oxide zigzag nanoribbons. Nano. Lett. 2008, 8, 1562–1565.

23

Lee, S. M.; Lee, Y. H.; Hwang, Y. G.; Elsner, J.; Porezag, D.; Frauenheim, T. Stability and electronic structure of GaN nanotubes from density-functional calculations. Phys. Rev. B 1999, 60, 7788–7791.

24

Du, A. J.; Zhu, Z. H.; Chen, Y.; Lu, G. Q.; Smith, S. C. First principle studies of zigzag AlN nanoribbon. Chem. Phys. Lett. 2009, 469, 183–185.

25

Sun, L.; Li, Y.; Li, Z.; Li, Q.; Zhou, Z.; Chen, Z.; Yang, J. L.; Hou, J. G. Electronic structures of SiC nanoribbons. J. Chem. Phys. 2008, 129, 174114.

26

Pan, H.; Feng, Y. F. Semiconductor nanowires and nanotubes: Effects of size and surface-to-volume ratio. ACS Nano 2008, 2, 2410–2414.

27

Koskinen, P.; Malola, S.; Hakkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.

28

Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.

29

Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

30
Dmol3 4.4 is a density functional theory quantum mechanical package available from Accelrys Software Inc.
31

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

32

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

33

Heyed, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional. J. Chem. Phys. 2004, 121, 1187–1193.

34

Heyed, J.; Peralta, J. E.; Scuseria, G. E.; Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 2005, 123, 174101–174108.

35

Gaussian 09, Revision A. 1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A., et al. Gaussian, Inc., Wallingford CT, 2009.

36

Huang, S. P.; Xu, H.; Bello, I.; Zhang, R. Q. Surface passivation-induced strong ferromagnetism of zinc oxide nanowires. Chem. Eur. J. , in press, 2010, DOI: 10.1002/chem.201001167.

37

Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000. 113, 9901–9904.

38

Henkelman, G.; Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000. 113, 9978–9985.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 September 2010
Revised: 02 November 2010
Accepted: 05 November 2010
Published: 01 February 2011
Issue date: February 2011

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by grants from the National Science Foundation (NSF) (No. DMR-0820521), NSF (No. CMMI-0709333), and the Nebraska Research Initiative, and by the University of Nebraska's Holland Computing Center.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return