Journal Home > Volume 4 , Issue 2

CdS nanorods have been sorted by length using a density gradient ultracentrifuge rate separation method. The fractions containing longer rods showed relatively stronger oxygen-related surface trap emission, while the shorter ones had dominant band-edge emission. These results suggest that the final length distribution of CdS nanorods is not a result of random nucleation and growth, but is related to the local synthesis conditions. Inspired by these findings, different synthesis environments (N2, air, and O2) have been employed in order to tailor the length distribution. In addition to the rod length, the photoluminescence properties of CdS nanorods can also be manipulated. Increasing the oxygen partial pressure significantly changed the growth behavior of CdS nanorods by improving the anisotropic growth.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanoseparation-Inspired Manipulation of the Synthesis of CdS Nanorods

Show Author's information Xiaoming Sun1( )Xiuju Ma1Lu Bai1Junfeng Liu1Zheng Chang1David G. Evans1Xue Duan1Jiaou Wang2Joseph F. Chiang3
State Key Laboratory of Chemical Resource EngineeringP.O. Box 98Beijing University of Chemical TechnologyBeijing100029China
Institute of High Energy PhysicsBeijing100039China
Department of Chemistry and BiochemistrySUNY-OneontaOneontaNY13820USA

Abstract

CdS nanorods have been sorted by length using a density gradient ultracentrifuge rate separation method. The fractions containing longer rods showed relatively stronger oxygen-related surface trap emission, while the shorter ones had dominant band-edge emission. These results suggest that the final length distribution of CdS nanorods is not a result of random nucleation and growth, but is related to the local synthesis conditions. Inspired by these findings, different synthesis environments (N2, air, and O2) have been employed in order to tailor the length distribution. In addition to the rod length, the photoluminescence properties of CdS nanorods can also be manipulated. Increasing the oxygen partial pressure significantly changed the growth behavior of CdS nanorods by improving the anisotropic growth.

Keywords: photoluminescence, Nanoseparation, controlled synthesis, quantum rods, CdS

References(33)

1

Fu, A.; Gu, W. W.; Larabel, C.; Alivisatos, A. P. Semiconductor nanocrystals for biological imaging. Curr. Opin. Neurobiol. 2005, 15, 568–575.

2

Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Hybrid nanorod–polymer solar cells. Science. 2002, 295, 2425–2427.

3

Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem. Int. Ed. 2002, 41, 2368–2371.

DOI
4

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

5

Chen, W.; Chen, K. B.; Peng, Q.; Li, Y. D. Triangular CdS nanocrystals: Rational solvothermal synthesis and optical studies. Small 2009, 5, 681–684.

6

Zhuang, Z. B.; Lu, X. T.; Peng, Q.; Li, Y. D. Direct synthesis of water-soluble ultrathin CdS nanorods and reversible tuning of the solubility by alkalinity. J. Am. Chem. Soc. 2010, 132, 1819–1821.

7

Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang, J. Z.; Hyeon, T. Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 2003, 125, 11100–11105.

8

Goesmann, H.; Feldmann, C. Nanoparticulate functional materials. Angew. Chem. Int. Ed. 2010, 49, 1362–1395.

9

Cao, Y. C.; Wang, J. H. One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J. Am. Chem. Soc. 2004, 126, 14336–14337.

10

Park, J.; An, K.; Hwang, Y.; Park, J. -G.; Noh, H. -J.; Kim, J. -Y.; Park, J. -H.; Hwang, N. -M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

11

Murray, C. B.; Noms, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

12

Talapin, D. V.; Lee, J. -S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

13

Wang, D. S.; Xie, T.; Li, Y. D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

14

Hu, J.; Li, L. S.; Yang, W.; Manna, L.; Wang, L. W.; Alivisatos, A. P. Linearly polarized emission from colloidal semiconductor quantum rods. Science 2001, 292, 2060–2063.

15

Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

16

Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 2001, 1, 349–351.

17

Li, Y. D.; Wang, Z. Y.; Ding, Y. Room temperature synthesis of metal chalcogenides in ethylenediamine. Inorg. Chem. 1999, 38, 4737–4740.

18

Li, Y. D.; Liao, H. W.; Ding, Y.; Qian, Y.T.; Yang, L.; Zhou, G. E. Nonaqueous synthesis of CdS nanorod semiconductor. Chem. Mater. 1998, 10, 2301–2303.

19

Li, P.; Wang, L. Y.; Wang, L.; Li, Y. D. Controlled synthesis and luminescence of semiconductor nanorods. Chem. Eur. J. 2008, 14, 5951–5956.

20

Chu, H. B.; Li, X. M.; Chen, G. D.; Zhou, W. W.; Zhang, Y.; Jin, Z.; Xu, J. J.; Li, Y. Shape-controlled synthesis of CdS nanocrystals in mixed solvents. Cryst. Growth. Des. 2005, 5, 1801–1806.

21

Voitekhovich, S. V.; Talapin, D. V.; Klinke, C.; Kornowski, A.; Weller, H. CdS nanoparticles capped with 1-substituted 5-thiotetrazoles: Synthesis, characterization, and thermolysis of the surfactant. Chem. Mater. 2008, 20, 4545–4547.

22

Zhang, H. W.; Delikanli, S.; Qin, Y. L.; He, S. L.; Swihart, M.; Zeng, H. Synthesis of monodisperse CdS nanorods catalyzed by Au nanoparticles. Nano Res. 2008, 1, 314–320.

23

Wang, F. D.; Tang, R.; Buhro, W. E. The trouble with TOPO: Identification of adventitious impurities beneficial to the growth of cadmium selenide quantum dots, rods, and wires. Nano Lett. 2008, 8, 3521–3524.

24

Brakke, M. K. Density gradient centrifugation: A new separation technique. J. Am. Chem. Soc. 1951, 73, 1847–1848.

25

Sun, X. M.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y. R.; Li, X. L.; Dai, H. J. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J. Am. Chem. Soc. 2008, 130, 6551–6555.

26

Sun, X. M.; Tabakman, S. M.; Seo, W. -S.; Zhang, L.; Zhang, G.; Sherlock, S.; Bai, L.; Dai, H. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew. Chem. Int. Ed. 2009, 48, 939–942.

27

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

28

Sun, X. M.; Luo, D. C.; Liu, J. F.; Evans, D. G. Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano. 2010, 4, 3381–3389.

29

Fagan, J. A.; Becker, M. L.; Chun, J.; Hobbie, E. K. Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 2008, 20, 1609–1613.

30

Chen, G.; Wang, Y.; Tan, L. H.; Yang, M.; Tan, L. S.; Chen, Y.; Chen, H. High-purity separation of gold nanoparticle dimers and trimers. J. Am. Chem. Soc. 2009, 131, 4218–4219.

31

Bai, L.; Ma, X. J.; Liu, J. F.; Sun, X. M.; Zhao, D. Y.; Evans, D. G. Rapid separation and purification of nanoparticles in organic density gradients. J. Am. Chem. Soc. 2010, 132, 2333–2337.

32

Price, C. A. Centrifugation in density gradients; Academic Press: New York, 1982.

33

Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B.; Alivisatos, A. P. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 2007, 7, 2951–2959.

File
nr-4-2-226_ESM.pdf (294.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 October 2010
Revised: 04 November 2010
Accepted: 05 November 2010
Published: 01 February 2011
Issue date: February 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China and the Program for New Century Excellent Talents in Universities.

Return