Journal Home > Volume 4 , Issue 2

MnO2/carbon nanocomposites with hierarchical pore structure and controllable MnO2 loading have been synthesized using a self-limiting growth method. This was achieved by the redox reactions of KMnO4 with sacrificed carbon substrates that contain hierarchical pores. The unique pore structure allows the synthesis of nanocomposites with tunable MnO2 loading up to 83 wt.%. The specific capacitance of the nanocomposites increased with the MnO2 loading; the conductivity measured by electrochemical impedance spectroscopy, on the other hand, decreased with increasing MnO2 loading. Optimization of the MnO2 loading resulted in nanocomposites with high specific capacitance and excellent rate capability. This work provides important fundamental understanding which will facilitate the design and fabrication of high-performance supercapacitor materials for a large variety of applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical Manganese Oxide/Carbon Nanocomposites for Supercapacitor Electrodes

Show Author's information Yiting Peng1,2,§Zheng Chen2,§Jing Wen2Qiangfeng Xiao2Ding Weng2Shiyu He1( )Hongbin Geng1( )Yunfeng Lu2( )
Department of Materials Science and EngineeringHarbin Institute of TechnologyHarbin150001China
Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaLos AngelesCA90095USA

§ These authors contributed equally.

Abstract

MnO2/carbon nanocomposites with hierarchical pore structure and controllable MnO2 loading have been synthesized using a self-limiting growth method. This was achieved by the redox reactions of KMnO4 with sacrificed carbon substrates that contain hierarchical pores. The unique pore structure allows the synthesis of nanocomposites with tunable MnO2 loading up to 83 wt.%. The specific capacitance of the nanocomposites increased with the MnO2 loading; the conductivity measured by electrochemical impedance spectroscopy, on the other hand, decreased with increasing MnO2 loading. Optimization of the MnO2 loading resulted in nanocomposites with high specific capacitance and excellent rate capability. This work provides important fundamental understanding which will facilitate the design and fabrication of high-performance supercapacitor materials for a large variety of applications.

Keywords: supercapacitor, Hierarchically porous carbon, MnO2/carbon nanocomposite

References(52)

1

Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta. 2000, 45, 2483–2498.

2

Conway, B. E. Electrochemical supercapacitors: Scientific fundamentals and technological applications; Kluwer Academic/Plenum: New York, 1999.

3

Huggins, R. A.; Parsons, R. Supercapacitors. Phil. Trans. R. Soc. Lond. A. 1996, 354, 1555–1566.

4

Liu, H.; Mao, C.; Lu, J.; Wang, D. Electronic power transformer with supercapacitors storage energy system. Electr. Pow. Syst. Res. 2009, 79, 1200–1208.

5

Raymundo-Pińero, E.; Cadek, M.; Béguin, F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 2009, 19, 1032–1039.

6

Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366.

7

Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763.

8

Centeno, T. A.; Stoeckli, F. On the specific double-layer capacitance of activated carbons, in relation to their structural and chemical properties. J. Power Sources. 2006, 154, 314–320.

9

Frackowiak, E. Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785.

10

Zheng, J. P.; Cygan, P. J.; Jow, T. R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 1995, 142, 2699–2703.

11

Subramanian, V.; Hall, S. C.; Smith, P. H.; Rambabu, B. Mesoporous anhydrous RuO2 as a supercapacitor electrode material. Solid State Ionics. 2004, 175, 511–515.

12

Wang, Y. G.; Wang, Z. D.; Xia, Y. Y. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim. Acta. 2005, 50, 5641–5646.

13

Toupin, M.; Brousse, T.; Belanger, D. Influence of micro-stucture on the charge storage properties of chemically synthesized manganese dioxide. Chem. Mater. 2002, 14, 3946–3952.

14

Pang, S. C.; Anderson, M. A.; Chapman, T. W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electro-deposited manganese dioxide. J. Electrochem. Soc. 2000, 147, 444–450.

15

Chang, J.; Lee, S.; Ganesh, T.; Mane, R. S.; Min, S.; Lee, W.; Han, S. H. Viologen-assisted manganese oxide electrode for improved electrochemical supercapacitors. J. Electroanal. Chem. 2008, 624, 167–173.

16

Subramanian, V.; Zhu, H.; Wei, B. Nanostructured MnO2: Hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. J. Power Sources. 2006, 159, 361–364.

17

Liu, K. C.; Anderson, M. A. Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc. 1996, 143, 124–130.

18

Lang, J. W.; Kong, L. B.; Wu, W. J.; Luo, Y. C.; Kang, L. Synthesis, characterization, and electrochemical properties of Ni(OH)2/ultra-stable Y zeolite composite. J. Mater. Sci. 2009, 44, 4466–4471.

19

Lin, C.; Ritter, J. A.; Popov, B. N. Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors. J. Electrochem. Soc. 1998, 145, 4097–4103.

20

Reddy, R. N.; Reddy, R. G. Porous structured vanadium oxide electrode material for electrochemical capacitors. J. Power Sources. 2006, 156, 700–704.

21

Hu, C. C.; Huang, C. M.; Chang, K. H. Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors. J. Power Sources. 2008, 185, 1594–1597.

22

Sato, Y.; Yomogida, K.; Nanaumi, T.; Kobayakawa, K.; Ohsawa, Y.; Kawai, M. Electrochemical behavior of activated-carbon capacitor materials loaded with ruthenium oxide. Electrochem. Solid-State Lett. 2000, 3, 113–116.

23

Kim, I. H.; Kim, J. H.; Lee, Y. H.; Kim, K. B. Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications. J. Electrochem. Soc. 2005, 152, A2170–A2178.

24

Chen, Z.; Qin, Y.; Weng, D.; Xiao, Q.; Peng, Y.; Wang, X.; Li, H.; Wei, F.; Lu, Y. Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv. Funct. Mater. 2009, 19, 3420–3426.

25

Wu, M.; Snook, G. A.; Chen, G. Z.; Fray, D. Redox deposition of manganese oxide on graphite for supercapacitors. J. Electrochem. Commun. 2004, 6, 499–504.

26

Huang, X.; Yue, H.; Attia, A.; Yang, Y. Preparation and properties of manganese oxide/carbon composites by reduction of potassium permanganate with acetylene black. J. Electrochem. Soc. 2007, 154, A26.

27

Ma, S. B.; Lee, Y. H.; Ahn, K. Y.; Kim, C. M.; Oh, K. H.; Kim, K. B. Spontaneously deposited manganese oxide on acetylene black in an aqueous potassium permanganate solution. J. Electrochem. Soc. 2006, 153, C27–C32.

28

Zhu, S.; Zhou, H.; Hibino, M.; Honma, I.; Ichihara, M. Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 2005, 15, 381–386.

29

Dong, X.; Shen, W.; Gu, J.; Xiong, L.; Zhu, Y.; Li, H.; Shi, H. J. MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J. Phys. Chem. B. 2006, 110, 6015–6019.

30

Zhang, H.; Cao, G.; Wang, Z.; Yang, Y.; Shi, Z.; Gu, Z. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 2008, 8, 2664–2668.

31

Raymundo-Pińero, E.; Khomenko, V.; Frackowiak, E.; Béguin, F. Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. J. Electrochem. Soc. 2005, 152, A229–A235.

32

Lee, C. Y.; Tsai, H. M.; Chuang, H. J.; Li, S. Y.; Lin, P.; Tsen, T. Y. Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrodes. J. Electrochem. Soc. 2005, 152, A716–A720.

33

Fan, Z.; Chen, J.; Wang, M.; Cui, K.; Zhou, H.; Kuang, Y. Preparation and characterization of manganese oxide/CNT composites as supercapacitive materials. Diam. Relat. Mater. 2006, 15, 1478–1483.

34

Fischer, A. E.; Pettigrew, K. A.; Rolison, D. R.; Stroud, R. M.; Long, J. W. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett. 2007, 7, 281–286.

35

Chu, H. Y.; Lai, Q. Y.; Wang, L.; Lu, J. F.; Zhao, Y. Preparation of MnO2/WMNT composite and MnO2/AB composite by redox deposition method and its comparative study as supercapacitive materials. Ionics. 2009, 16, 233–238.

36

Wang, D. W.; Li, F.; Liu, M.; Lu, G.; Cheng, H. M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. Int. Ed. 2008, 47, 373–376.

37

Jiao, F.; Bruce, P. G. Mesoporous crystalline β-MnO2-reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 2007, 5, 657–660.

38

Jin, X.; Zhou, Wu.; Zhang, S.; Chen, G. Z. Nanoscale microelectrochemical cells on carbon nanotubes. Small. 2007, 3, 1513–1517.

39

Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 2005, 44, 7053–7059.

40

Feng, Q.; Sun, E. H.; Yanagisawa, K.; Yamasaki, N. Synthesis of birnessite-type sodium manganese oxides by solution reaction and hydrothermal methods. J. Ceram. Soc. Jpn. 1997, 105, 564–568.

41

Shen, B.; Qin, L. Study on MSW catalytic combustion by TGA. Energy Convers. Manage. 2006, 47, 1429–1437.

42

Liu, L.; Feng, Q.; Yanagisawa, K.; Wang, Y. Characterization of birnessite-type sodium manganese oxides prepared by hydrothermal reaction process. J. Mater. Sci. Lett. 2000, 19, 2047–2050.

43

Feng, Q.; Yanagisawa, K.; Yamasaki, N. Synthesis of birnessite-type potassium manganese oxide. J. Mater. Sci. Lett. 1997, 16, 110–112.

44

Sharma, R. K.; Oh, H. S.; Shul, Y. G.; Kim, H. Growth and characterization of carbon-supported MnO2 nanorods for supercapacitor electrode. Phy. Rev. B: Condens. Matter. 2008, 403, 1763–1769.

45

Liu, R.; Shi, Y.; Wan, Y.; Meng, Y.; Zhang, F.; Gu, D.; Chen, Z.; Tu, B.; Zhao, D. Triconstituent co-assembly to ordered mesostructured polymer−silica and carbon−silica nanocomposites and large-pore mesoporous carbons with high surface areas. J. Am. Chem. Soc. 2006, 128, 11652–11662.

46

Vol'khin, V. V.; Pogodina, O. A.; Leont'eva, G. V. Nonstoi-chiometric compounds based on manganese(III, IV) oxides with the birnessite structure. Russ. J. Gen. Chem. 2002, 72, 173–177.

47

Devaraj, S.; Munichandraiah, N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J. Phys. Chem. C. 2008, 112, 4406–4417.

48

Luo, J.; Huang, A.; Park, S. H.; Suib, S. L.; O'Young, C. Crystallization of sodium β-birnessite and accompanied phase transformation. Chem. Mater. 1998, 10, 1561–1568.

49

Hu, Q.; Lu, Y.; Meisner, G. P. Preparation of nanoporous carbon particles and their cryogenic hydrogen storage capacities. J. Phys. Chem. C. 2008, 112, 1516–1523.

50

Brock, S. L.; Duan, N.; Tian, Z. R.; Giraldo, O.; Zhou, H.; Suib, S. L. A review of porous manganese oxide materials. Chem. Mater. 1998, 10, 2619–2628.

51

Toupin, M.; Brousse, T.; Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 2004, 16, 3184–3190.

52

Guzman, R. N. D.; Awaluddin, A.; Shen, Y.; Tian, Z.; Suib, S. L.; Ching, S.; O'Young, C. Electrical resistivity measurements on manganese oxides with layer and tunnel structures: Birnessites, todorokites, and cryptomelanes. Chem. Mater. 1995, 7, 1286–1292.

File
nr-4-2-216_ESM.pdf (321.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2010
Revised: 05 November 2010
Accepted: 06 November 2010
Published: 01 February 2011
Issue date: February 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010

Acknowledgements

Acknowledgements

This work was partially supported by the Center for Molecularly Assembled Material Architectures for Solar Energy Production, Storage, and Carbon Capture, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0001342.

Return