Journal Home > Volume 4 , Issue 2

We have investigated individual bulk-like wires of wurtzite InP using photoluminescence, photoluminescence excitation spectroscopy and transmission electron microscopy. Using two different methods we find that the top of the valence band is split, as expected theoretically. This splitting of the valence band is peculiar to wurtzite InP and does not occur in zinc blende InP. We find the energy difference between the two bands to be 40 meV.


menu
Abstract
Full text
Outline
About this article

Valence Band Splitting in Wurtzite InP Nanowires Observed by Photoluminescence and Photoluminescence Excitation Spectroscopy

Show Author's information Gerben L. Tuin1,( )Magnus T. Borgström1Johanna Trägårdh1,Martin Ek2L. Reine Wallenberg2Lars Samuelson1Mats-Erik Pistol1( )
Solid State Physics/Nanometer Structure ConsortiumBox 118Lund UniversityS-221 00 LundSweden
Polymer & Materials Chemistry/nCHREMLund UniversityS-22100 LundSweden

Work performed while on leave from: Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft

Present address: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL United Kingdom

Abstract

We have investigated individual bulk-like wires of wurtzite InP using photoluminescence, photoluminescence excitation spectroscopy and transmission electron microscopy. Using two different methods we find that the top of the valence band is split, as expected theoretically. This splitting of the valence band is peculiar to wurtzite InP and does not occur in zinc blende InP. We find the energy difference between the two bands to be 40 meV.

Keywords: photoluminescence, wurtzite InP, excitation spectroscopy, valence band structure

References(15)

1

Mattila, M.; Hakkarainen, T.; Mulot, M; Lipsanen, H. Crystal-structure-dependent photoluminescence from InP nanowires. Nanotech 2006, 17, 1580–1583.

2

Mishra, A.; Titova, L. V.; Hoang, T. B.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Kim, Y.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C. Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires. Appl Phys Lett 2007, 91, 263104.

3

Bao, J. M.; Bell, D. C.; Capasso, F.; Wagner, J. B.; Mårtensson, T.; Trägårdh, J.; Samuelson, L. Optical properties of rotationally twinned InP nanowire heterostructures. Nano Lett 2008, 8, 836–841.

4

Algra, R.; Verheijen, M. A.; Borgström, M. T.; Feiner, L. F.; Immink, G.; van Enckevort, W. J. P.; Vlieg, E.; Bakkers, E. P. A. M. Twinning superlattices in indium phosphide nanowires. Nature 2008, 456, 369–372.

5

Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.; Pemasiri, K.; Montazeri, M.; Jackson, H. E.; Smith, L. M.; Yarrison-Rice, J. M.; Zhang, X.; Zou, J. The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires. Nanotech 2009, 20, 225606.

6

Pemasiri, K.; Montazeri, M.; Gass, R.; Smith, L. M.; Jackson, H. E.; Yarrison-Rice, J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C.; Zhang, X.; Zou, J. Carrier Dynamics and Quantum Confinement in type II ZB–WZ InP Nanowire Homostructures. Nano Lett 2009, 9, 648–654.

7

Caroff, P.; Dick, K. A.; Johansson, J.; Messing, M. E.; Deppert, K.; Samuelson, L. Nature Nanotech 2009, 4, 50–55.

DOI
8

Glas, F.; Harmand, J. C.; Patriarche, G. Why does wurtzite form in nanowires of III–V zinc blende semiconductors? Phys. Rev. Lett. 2007, 99, 146101.

9

Dubrovskii, V. G.; Sibirev, N. V. Growth thermodynamics of nanowires and its application to polytypism of zinc blende III–V nanowires. Phys. Rev. B 2008, 77, 035414.

10

Yamashita, T.; Sano, K.; Akiyama, T.; Nakamura, K.; Ito, T. Theoretical investigations on the formation of wurtzite segments in group III–V semiconductor nanowires. Appl. Surf. Sci. 2008, 254, 7668–7671.

11

De, A.; Pryor, C. E. Predicted band structures of III–V semiconductors in the wurtzite phase. Phys. Rev. 2010, B81, 155210.

12

Perera, S.; Pemasiri, K.; Fickenscher, M. A.; Jackson, H. E.; Smith, L; Yarrison-Rice, M. J.; Paiman, S.; Gao, Q.; Tan, H. H.; Jagadish, C. Probing valence band structure in wurtzite InP nanowires using excitation spectroscopy. Appl. Phys. Lett. 2010, 97, 023106.

13

Magnusson, M. H.; Deppert, K.; Malm, J. O.; Bovin, J. O.; Samuelson, L. Size-selected gold nanoparticles by aerosol technology. Nanostructured Materials 1999, 12, 45–48.

14

Ghandhi, S. K.; Parat, K. K. Shallow N+ diffusion into InP by an open-tube diffusion technique. Appl. Phys. Lett. 1987, 50, 209–211.

15

Bugajski, M.; Lewandowski, W. Concentration-dependent absorption and photoluminescence of n-type InP. J. Appl. Phys. 1985, 57, 521–530.

Publication history
Copyright

Publication history

Received: 23 August 2010
Revised: 14 October 2010
Accepted: 26 October 2010
Published: 01 February 2011
Issue date: February 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2010
Return