Journal Home > Volume 4 , Issue 2

Hydrogenated amorphous Si (α-Si: H) is a promising material for photovoltaic applications due to its low cost, high abundance, long lifetime, and non-toxicity. We demonstrate a device designed to investigate the effect of nanostructured back reflectors on quantum efficiency in photovoltaic devices. We adopt a superstrate configuration so that we may use conventional industrial light trapping strategies for thin film solar cells as a reference for comparison. We controlled the nanostructure parameters via a wafer-scale self-assembly technique and systematically studied the relation between nanostructure size and photocurrent generation. The gain/loss transition at short wavelengths showed red-shifts with decreasing nanostructure scale. In the infrared region the nanostructured back reflector shows large photocurrent enhancement with a modified feature scale. This device geometry is a useful archetype for investigating absorption enhancement by nanostructures.


menu
Abstract
Full text
Outline
About this article

Effects of Nanostructured Back Reflectors on the External Quantum Efficiency in Thin Film Solar Cells

Show Author's information Chingmei Hsu1George F. Burkhard2Michael D. McGehee1Yi Cui1( )
Department of Materials Science and EngineeringStanford UniversityStanfordCalifornia94305USA
Department of Applied PhysicsStanford UniversityStanfordCalifornia94305USA

Abstract

Hydrogenated amorphous Si (α-Si: H) is a promising material for photovoltaic applications due to its low cost, high abundance, long lifetime, and non-toxicity. We demonstrate a device designed to investigate the effect of nanostructured back reflectors on quantum efficiency in photovoltaic devices. We adopt a superstrate configuration so that we may use conventional industrial light trapping strategies for thin film solar cells as a reference for comparison. We controlled the nanostructure parameters via a wafer-scale self-assembly technique and systematically studied the relation between nanostructure size and photocurrent generation. The gain/loss transition at short wavelengths showed red-shifts with decreasing nanostructure scale. In the infrared region the nanostructured back reflector shows large photocurrent enhancement with a modified feature scale. This device geometry is a useful archetype for investigating absorption enhancement by nanostructures.

Keywords: scattering, Solar cells, solar energy, amorphous silicon, back reflector

References(21)

1

Green, M. A. Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions. Prog. Photovoltaics 2002, 10, 235–241.

2

Yablonovitch, E. Statistical ray optics. J. Opt. Soc. Am. 1982, 72, 899–907.

3

Campbell, P.; Green, M. A. Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 1987, 62, 243–249.

4

Fahr, S.; Rockstuhl, C.; Lederer, F. Engineering the randomness for enhanced absorption in solar cells. Appl. Phys. Lett. 2008, 92, 171114.

5

Franken, R. H.; Stolk, R. L.; Li, H.; van der Werf, C. H. M.; Rath, J. K.; Schropp, R. E. I. Understanding light trapping by light-scattering textured back electrodes in thin-film nip silicon solar cells. J. Appl. Phys. 2007, 102, 014503.

6

Müller, J.; Rech, B.; Springer, J.; Vanecek, M. TCO and light trapping in silicon thin film solar cells. Sol. Energy 2004, 77, 917–930.

7

Stuart, H. R.; Hall, D. G. Absorption enhancement in silicon–on–insulator waveguides using metal island films. Appl. Phys. Lett. 1996, 69, 2327–2329.

8

Stuart, H. R.; Hall, D. G. Island size effects in nanoparticle-enhanced photodetectors. Appl. Phys. Lett. 1998, 73, 3815–3817.

9

Schaadt, D. M.; Feng, B.; Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005, 86, 063106.

10

Pillai, S.; Catchople, K. R.; Trupke, T.; Green, M. A. Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 2007, 101, 093105.

11

Ferry, V. E.; Verschuuren, M. A.; Li, H. B. T.; Schropp, R. E. I.; Atwater, H. A.; Polman, A. Improved red-response in thin film α-Si: H solar cells with soft-imprinted plasmonic back reflectors. Appl. Phys. Lett. 2009, 95, 183503.

12

Ferry, V. E.; Sweatlock, L. A.; Pacifici, D.; Atwater, H. A. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett. 2008, 8, 4391–4397.

13

Zhu, J.; Hsu, C. M.; Yu, Z.; Fan, S.; Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 2010, 10, 1979–1984.

14

Hsu, C. M.; Connor, S. T.; Tang, M. X.; Cui, Y. Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl. Phys. Lett. 2008, 93, 133109.

15

Ferry, V. E.; Verschuuren, M. A.; Li, H. B. T.; Verhagen, E.; Walters, R. J.; Schropp, R. E. I.; Atwater, H. A.; Polman, A. Light trapping in ultrathin plasmonic solar cells. Opt. Express 2010, 18, A237–A245.

16

Keisuke, N.; Katsuaki, T.; Atwater, H. A. Plasmonic nanoparticle enhanced light absorption in GaAs solar cells. Appl. Phys. Lett. 2008, 93, 121904.

17

Derkacs, D.; Lim, S. H.; Matheu, P.; Mar, W.; Yu, E. T. Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles. Appl. Phys. Lett. 2006, 89, 093103.

18

Morfa, A. J.; Rowlen, K. L.; Reilly, T. H.; Romero, M. J.; van de Lagemaat, J. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. 2008, 92, 013504.

19

Catchpole, K. R.; Polman, A. Design principles for particle plasmon enhanced solar cells. Appl. Phys. Lett. 2008, 93, 191113.

20

Beck, F. J.; Polman, A.; Catchpole, K. R. Tunable light trapping for solar cells using localized surface plasmons. J. Appl. Phys. 2009, 105, 114310.

21

Beck, F. J.; Mokkapati, S.; Polman A.; Catchpole, K. R. Asymmetry in light-trapping by plasmonic nanoparticle arrays located on the front or on the rear of solar cells. Appl. Phys. Lett. 2010, 96, 033113.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 October 2010
Revised: 21 October 2010
Accepted: 24 October 2010
Published: 01 February 2011
Issue date: February 2011

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

We thank Dr. Tiemin Zhao and Dr. Zongfu Yu for material deposition and optical discussion.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return